

 2

Best Practice Guide on
Power Consumption
Measurements in
EuroHPC Systems

 3

Project Title High-level specialised application support service in High-
Performance Computing (HPC)

Project Acronym EPICURE
Project Number 101139786
Type of Action DIGITAL JU Simple Grants
Topic DIGITAL-EUROHPC-JU-2022-APPSUPPORT-01-01
Starting Date of Project 2024-02-01
Ending Date of Project 2028-01-31
Duration of the Project 48 months
Website epicure-hpc.eu
Document version 1.0
Document publication date 2025-07-31

Disclaimer
Funded by the European Union. Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the European Union or EuroHPC Joint
Undertaking. Neither the European Union nor the granting authority can be held responsible
for them.

 4

Executive Summary

This document provides practical guidance for users of EPICURE on accessing and
interpreting power consumption data from various EuroHPC supercomputing systems. It
outlines the different approaches each system uses to collect, aggregate, and expose energy
and power measurements, and offers concrete examples and job script templates to help
users monitor and analyse the energy footprint of their applications.

 5

Table of Contents

1. Introduction .. 6

2. Overview of the benchmarks .. 7

2.1. CPU .. 7
2.2. GPU ... 8

3. EuroHPC systems.. 9

3.1. LUMI .. 10
3.2. Leonardo ... 11
3.3. MareNostrum 5 ... 13
3.4. MeluXina ... 15
3.5. Karolina ... 16
3.6. Discoverer ... 18
3.7. Vega ... 19
3.8. Deucalion .. 20
3.9. JUPITER .. 21

4. Tools ... 23
4.1. Slurm ... 23
4.2. EAR .. 23
4.3. MERIC runtime system .. 27
4.4. COUNTDOWN ... 29
4.5. RAPL and NVIDIA NVML .. 31
4.6. Dashboards .. 32

5. Overview ... 39

5.1. Job script examples ... 39
5.2. Performance-energy graph ... 42
5.3. Energy usage .. 50
5.4. Normalized energy usage per ns/day and per 1/s ... 53
5.5. Performance and energy heat maps .. 57

6. Conclusion ... 61

 6

1. Introduction

This Best Practice Guide on Power Consumption Measurements in EuroHPC Systems
provides an overview of how users can access and interpret power consumption data
across all currently active EuroHPC supercomputers. It describes the tools and
methods available to monitor and analyse energy usage during computation on these
systems.

To support practical application, the guide also includes example job scripts and
benchmark outputs collected from multiple EuroHPC machines. These resources are
shared on EPICURE’s shortbench GitLab repository (EPICURE’s shortbench GitLab),
enabling users to integrate power monitoring into their workflows more effectively.

https://opencode.it4i.eu/epicure/shortbench
https://opencode.it4i.eu/epicure/shortbench

 7

2. Overview of the benchmarks

The benchmarks selected for this study are well-known within the HPC community and
are typically available on all EuroHPC clusters. Each of these applications offers
options to run on both CPUs and GPUs, allowing us to compare their performance
and power consumption across different hardware configurations.

These applications are also widely used across HPC facilities, making the results
particularly relevant for users deciding which machine best suits their workloads, or
those seeking practical examples of job scripts and input configurations.

2.1. CPU
CP2K

About the code
CP2K is an open-source quantum chemistry and solid-state physics software
package. It is known for its efficiency and scalability on large parallel systems. CP2K
provides a general framework for different modelling methods such as DFT which is
the one used in our benchmark input.

About the benchmark
H2O-DFT-LS is one of CP2K’s default benchmarks included in its installation package.
It performs large-scale DFT calculations on water molecules and is commonly used to
evaluate the scalability and parallel performance of DFT-based simulations on different
computing architectures.

GROMACS

About the code
GROMACS is an open-source, high-performance molecular dynamics (MD) package
widely used in the life science community It is primarily designed for biochemical
molecules like proteins, lipids and nucleic acids, but can be used also for non-
biological system like in materials science.

About the benchmark
lignocellulose-rf is part of the PRACE Unified European Applications Benchmark Suite
(UEABS). It simulates a complex lignocellulosic biomass system using reaction-field
for electrostatics, making it relevant for large-scale simulations and scalability
benchmarking.

NAMD

About the code
NAMD is a computer software optimized for high-performance molecular dynamics
simulations. It is noted for its parallel efficiency and is often used to simulate large
systems (millions of atoms).

https://www.cp2k.org/performance
https://repository.prace-ri.eu/git/UEABS/ueabs/-/tree/master/gromacs
https://www.cp2k.org/performance
https://repository.prace-ri.eu/git/UEABS/ueabs/-/tree/master/gromacs

 8

About the benchmarks
20stmv2fs.namd (memory-optimized) and 20stmv2fs-nonopt.namd (non–memory-
optimized) are official benchmarks included with NAMD source code. Both are
designed to test performance on large biomolecular systems like the Satellite Tobacco
Mosaic Virus (STMV).

2.2. GPU

The same benchmarks were also executed on GPU-accelerated hardware, using the
same input configurations as on the CPU. This approach enables a direct comparison
of performance and scalability between CPU-only and GPU-accelerated runs.

By comparing CPU and GPU results on identical benchmarks, we can better evaluate
how effectively each code takes advantage of GPU acceleration, as well as quantify
improvements in both performance and power efficiency when running on GPU-
enabled EuroHPC infrastructures. On systems like MareNostrum5, Leonardo, and
LUMI, where both CPU and GPU partitions are part of the same machine and share
uniform power measurement tools, the comparison becomes especially valuable and
reliable.

https://www.ks.uiuc.edu/Research/namd/benchmarks/
https://www.ks.uiuc.edu/Research/namd/benchmarks/
https://www.ks.uiuc.edu/Research/namd/benchmarks/
https://www.ks.uiuc.edu/Research/namd/benchmarks/

 9

3. EuroHPC systems

As part of the EPICURE project, we have access to all currently active EuroHPC
supercomputing systems across participating sites. This unique collaboration enables
us to run benchmarks and collect power consumption data directly on each of these
systems, ensuring that the information and examples provided in this guide reflect real,
up-to-date usage across the entire EuroHPC landscape.

In this section, we present an overview of each EuroHPC system included in our study.
For each machine, we describe its architecture, available accelerators (CPU/GPU),
and the tools or interfaces it provides for monitoring power and energy usage. This
context will help users understand the capabilities and differences between systems,
and how to apply the practical examples shared in this guide to their own jobs.

 10

3.1. LUMI

LUMI is a pre-exascale EuroHPC supercomputer, supplied by HPE and in production
since 2022. It is hosted by CSC in its Kajaani data centre in Finland.

Specifications

GPU partition (LUMI-G)

• 2928 GPU nodes, 4 AMD MI250 GPUs (128 GiB GPU memory) and 1 AMD
Trento host-CPU (512 GiB host memory).

CPU partition (LUMI-C)
• 1888 CPU nodes, 2 x 64-core 2.45 GHz AMD Milan, 256 GiB RAM
• 128 CPU nodes, 2 x 64-core 2.45 GHz AMD Milan, 512 GiB RAM
• 32 CPU nodes, 2 x 64-core 2.45 GHz AMD Milan, 1 TiB RAM

Interactive data-analytics partition (LUMI-D)
• 8 big-memory nodes, 2 x 64-core 2.25 GHz AMD Rome, 4 TiB RAM
• 8 visualization nodes, 8 NVIDIA A40 GPUs (48 GiB GPU memory) and 2 x 64-

core 2.25 GHz AMD Milan (2 TiB host memory)

Measurements

Energy is measured on node level and job consumed energy is reported through Slurm
energy accounting.
Data from pm_counters on node level is available to admins.

Additional info

Slurm info: 23.02.7; acct_gather_energy/pm_counters
Extra tools:
Benchmarking environment: Manual executions
Performance analysis: CrayPat, rocprof. Other (Score-P, Scalasca) may be installed
using EasyBuild recipes found in the LUMI Software Library but are not officially
supported.

https://www.lumi-supercomputer.eu
https://docs.lumi-supercomputer.eu
https://docs.lumi-supercomputer.eu/runjobs/scheduled-jobs/jobenergy/
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/

https://www.lumi-supercomputer.eu/
https://docs.lumi-supercomputer.eu/
https://docs.lumi-supercomputer.eu/runjobs/scheduled-jobs/jobenergy/
https://docs.lumi-supercomputer.eu/runjobs/scheduled-jobs/jobenergy/
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/
https://www.lumi-supercomputer.eu/
https://docs.lumi-supercomputer.eu/
https://docs.lumi-supercomputer.eu/runjobs/scheduled-jobs/jobenergy/
https://docs.lumi-supercomputer.eu/runjobs/scheduled-jobs/jobenergy/
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/

 11

3.2. Leonardo

Leonardo is a next-generation pre-exascale Tier-0 supercomputer, part of the
EuroHPC Joint Undertaking, in production since August 2023. It is hosted by CINECA
at the Bologna Technopole in Italy and it is developed and supplied by EVIDEN ATOS.

Specifications

Leonardo is structured into two main compute partitions, both connected via
DragonFly+ (NVIDIA Mellanox Infiniband HDR) 200 Gbps and managed using Slurm
workload manager.

Booster Partition

• 3456 heterogenous nodes with 32 cores/node and 4 GPUs/ node
• Based on single socket Intel Ice Lake CPU (Intel Xeon Platinum 8358, 2.60

GHz, TDP 250 W)
• Equipped with NVIDIA Ampere GPUs, 64 GB HBM2e NVLink 3.0 (200 GB/s)
• 2 x dual port HDR100 per node

Data Centric General Purpose (DCGP) Partition
• 1536 nodes with 112 cores/node
• Based on dual socket 56 cores Intel Sapphire Rapids CPU (2 x Intel Xeon

Platinum 8480p, 2.00 GHz, TDP 350 W)
• Single port HDR100 per node

Measurements

• Energy can be measured at the node and job level by installing COUNTDOWN
(https://github.com/EEESlab/countdown), for the Booster partition only.

• GPU energy on Booster can be measured by users via nvidia-smi and NVML.
• CPU energy can be retrieved by reading RAPL sampling data on Booster and

DCGP.
• The CINEMON tool (https://gitlab.hpc.cineca.it/amonteru/cinemon-public.git),

developed by CINECA staff and based on RAPL and NVML power
measurements, can be installed on Leonardo cluster to measure the overall
CPU, RAM, GPU, NODE and JOB energy consumed. Time series are currently
available, environment variables can be used to adapt the sampling period of
RAPL and NVML. More information regarding its deployment and measurement
configurations can be found on the project README.md.

Additional info

Slurm info: 22.05.10
Extra tools: COUNTDOWN, Intel RAPL and NVIDIA NVML, NVIDIA-SMI, CINEMON
Benchmarking environment: JUBE
Performance analysis: SCORE-P, NSYS, NCU

https://leonardo-supercomputer.cineca.eu

https://leonardo-supercomputer.cineca.eu/
https://leonardo-supercomputer.cineca.eu/

 12

https://leonardo-supercomputer.cineca.eu/hpc-system/#jump-efficiency
https://docs.hpc.cineca.it/index.html

https://leonardo-supercomputer.cineca.eu/hpc-system/
https://docs.hpc.cineca.it/index.html
https://leonardo-supercomputer.cineca.eu/hpc-system/
https://docs.hpc.cineca.it/index.html

 13

3.3. MareNostrum 5

MareNostrum 5 is a pre-exascale EuroHPC supercomputer supplied by Bull SAS that
combines Lenovo ThinkSystem SD650 V3 and Eviden BullSequana XH3000
architectures, providing two partitions with different technical characteristics.

Specifications

MareNostrum 5 GPP (General Purpose Partition)
The MareNostrum 5 GPP, a general-purpose system, houses 6,408 nodes based on
Intel Sapphire Rapids (4th Generation Intel Xeon Scalable Processors), along with an
additional 72 nodes featuring Intel Sapphire Rapids HBM (High Bandwidth Memory).
This configuration results in a total count of 726,880 processor cores and 1.75PB of
main memory. The different configuration of nodes within this partition is present
below:

• 6192 nodes, 2 x Intel Xeon Platinum 8480+ 56 cores, 2 GHz, 256 GiB
• 216 Highmem nodes, 2 x Intel Xeon Platinum 8480+ 56 cores, 2 GHz, 1024

GiB
• 72 HBM nodes, 2 x Intel Xeon Platinum 8480+ 56 cores, 2 GHz, 128 GiB
• 10 Data nodes, 2 x Intel Xeon Platinum 8480+ 56 cores, 2 GHz, 2048 GiB

MareNostrum 5 ACC (Accelerated Partition)
The MareNostrum 5 ACC accelerated system comprises 1,120 nodes based on Intel
Xeon Sapphire Rapids processors and NVIDIA Hopper GPUs, offering a total (CPUs
+ GPUs) of 680,960 compute units. The nodes are configured with the following
components:

• 1120 nodes, 2x Intel Xeon Platinum 8460Y+ 40cores, 2.3 GHz, 512 GB, 4x
NVIDIA Hopper H100 64GB HBM2

Measurements

• Energy usage is reported through Slurm energy accounting and the Energy
Aware Runtime (EAR) tool.

• On the GPP partition, energy consumption is monitored using both EAR and
Slurm energy accounting.

• On the ACC partition, energy consumption is monitored using EAR only.

Additional info

Slurm info: 23.02.7
Extra tools: EAR
Benchmarking environment: JUBE
Performance analysis: TALP, Extrae and Paraver

https://www.bsc.es/supportkc/docs/MareNostrum5/intro/

https://www.bsc.es/supportkc/docs/MareNostrum5/intro/
https://www.bsc.es/supportkc/docs/MareNostrum5/intro/

 14

https://www.bsc.es/supportkc/docs/MareNostrum5/slurm

https://www.bsc.es/supportkc/docs/MareNostrum5/slurm
https://www.bsc.es/supportkc/docs/MareNostrum5/slurm

 15

3.4. MeluXina

The system is in production since November 2021. The supercomputer is based on
Atos Sequana XH2000, with 813 compute nodes, which are interconnected with
InfiniBand (Dragonfly+ topology).

Specifications

CPU partition

• 573 CPU nodes, 2x AMD Rome 7H12 (64c, 2.6 GHz, 280W), 512GiB RAM
GPU partition:

• 200 GPU nodes 4x Nvidia A100 40 GiB HBM2, 2x AMD Rome 7452 (32c, 2.3
GHz, 155W), 512 GiB RAM

Large memory partition
• 20 fat nodes, 2x AMD Rome 7H12 (64c, 2.6 GHz, 280W), 4 TiB RAM

FPGA partition
• 20 FPGA nodes, 2x BittWare 520N-MX 16 GiB HBM2 (Intel Stratix 10MX chip),

2x AMD Rome 7452 (32c, 2.3 GHz, 155W), 512 GiB RAM

Measurements

• Energy is measured on node level and job consumed energy is reported
through Slurm energy accounting.

• Data from IPMI sensors on node level is available to admins.
• For FPGA cards, we use the bittware “minitor” executable which is only

available to admins.

Additional info

Slurm info: 23.11.9; acct_gather_energy/ipmi
Extra tools:
Benchmarking environment: Reframe
Performance analysis: Score-P, perf, Intel VTune, NVIDIA Nsight Systems

https://docs.lxp.lu
https://docs.lxp.lu/first-steps/handling_jobs/#energy-monitoring

https://docs.lxp.lu/
https://docs.lxp.lu/first-steps/handling_jobs/#energy-monitoring
https://docs.lxp.lu/
https://docs.lxp.lu/first-steps/handling_jobs/#energy-monitoring

 16

3.5. Karolina

Karolina is HPE Apollo (Apollo 200 and Apollo 6500) system with fully non-blocking
fat-tree InfiniBand interconnect. The system is in operation from Q2 of 2021. The
Karolina cluster consists of several partitions which together gives over 15.7 PFLOP/s
theoretical peak performance.

Specifications

CPU partition

• 720 nodes, 2 x AMD Zen 2 EPYC 7H12 (280W TDP), 256 GB DDR4
GPU partition

• 72 nodes, 8 x NVIDIA A100 (40 GB HBM2) (400 W TDP), 2 x AMD Zen 3 EPYC
7763 (280 W TDP), 1024 GB DDR4

Measurements

In the Karolina system, MERIC energy efficient HPC software suite is deployed.
Using its Job budgeting service every user may read energy consumption of jobs
executed under the project the user participates in. Administrators can access all jobs.
It is also possible to extract energy consumption of a project, a cluster, a user, or
specific time period. In login nodes, a command line utility get_energy is available for
users.

The MERIC Job budgeting service on Karolina provides job energy consumption at
several levels:

• CPU energy consumption – In band (performance counters).
• GPU energy consumption – In band (performance counters), if GPUs

available.
• Node energy consumption – Combination of CPU and GPU energy

consumption (high frequency power sampling, typically 1kHz) and Out-of-Band
power monitoring of the node (low frequency, typically 0.017 up to 1 Hz).

• Overall energy consumption – Node energy consumption multiplied by
system Power Usage Effectiveness (PUE) at the moment of the job execution.

• CO2e – Overall energy consumption multiplied by carbon intensity
(gCO2eq/kWh) at the moment of the job execution. The source of the carbon
intensity can be site-specific, or universal solution reading the data from
https://app.electricitymaps.com/, which provides the carbon intensity per region
(in Europe typically per country).

Besides the command line utility which prints the CO2e and energy consumption at all
the levels, the Job budgeting service also provides web interface which in addition
presents power consumption timeline (power consumption of each CPU, each GPU,
each node) during the job. The timeline granularity is 0.017 Hz (one sample per
minute) presenting average power consumption during the past minute.

https://app.electricitymaps.com/
https://app.electricitymaps.com/

 17

For users, MERIC runtime system (used as a user-tool instead of runtime system) is
available as a software module to measure energy consumption per application
execution using command line utility, or energy consumption and energy-efficiency
metrics per application region if linked with the library and application's regions of
interest instrumented. See section 4.3 for more details.

Administrators have additional power monitoring dashboards presenting power and
temperature level per node and chassis in a rack, per rack, cluster and other
infrastructure levels according to site-specific availability.

Energy efficiency optimization

From February 2023 the Karolina cluster is operated in the static energy efficient
mode, which reduces CPU core frequency limit of CPU partition from 3.3 GHz to 2.1
GHz, and GPU SMs frequency limit of GPU partition from 1.41 GHz to 1.29 GHz.

Additionally, a group of users (extended on request) may access CPU and GPU power
management knobs to optimize energy efficiency of the executed workload. MERIC
runtime system is available as a software module to expose these knobs, and provide
static and automatic dynamic tuning to improve executed application energy efficiency.
See section 4.3 for more details.

Additional info

Slurm info: 23.11.10
Extra tools: MERIC
Benchmarking environment: Gitlab runners with Jacamar CI driver available in
IT4Innovations' GitLab (available to all system users) which allows to execute
continuous integration and continuous benchmarking jobs in compute nodes.
Performance analysis: POP CoE tools (Score-P, Scalasca, Extrae, MAQAO, DLB,
MERIC, MUST, CARM), NVIDIA Nsight Systems, Linaro's software tools, Intel Advisor,
Intel VTune, AMD μProf

https://docs.it4i.cz/karolina/introduction/
https://docs.it4i.cz/general/energy/?h=energy
https://code.it4i.cz/energy-efficiency/meric-suite
https://pop-coe.eu/

https://docs.it4i.cz/karolina/introduction/
https://docs.it4i.cz/general/energy/?h=energy
https://code.it4i.cz/energy-efficiency/meric-suite
https://pop-coe.eu/
https://docs.it4i.cz/karolina/introduction/
https://docs.it4i.cz/general/energy/?h=energy
https://code.it4i.cz/energy-efficiency/meric-suite
https://pop-coe.eu/

 18

3.6. Discoverer

The system is in production since September 2021. The supercomputer is based on
Atos Sequana XH2000, with 1128 compute nodes, which are interconnected with
InfiniBand (Dragonfly+ topology).

Specifications

CPU partition

• 1110 CPU nodes, 2x AMD Rome 7H12 (64c, 2.6 GHz, 280 W), 256 GiB RAM
Large memory partition:

o 18 fat nodes, 2x AMD Rome 7H12 (64c, 2.6 GHz, 280 W), 1 TiB RAM
Discoverer+ GPU partition

• 32 (4 × 8) NVIDIA H200 GPU accelerators, 448 (112 × 4) hardware CPU cores,
7.84 (1.96 × 4) TiB RAM

Measurements

Energy is measured on node level and job consumed energy is reported through
custom web based interface.
Data from IPMI sensors on node level is available to admins.

Additional info

Slurm info: 20.02.6-Bull.1.1
Extra tools:
Benchmarking environment: Manual executions
Performance analysis: Intel Vtune, NVIDIA Nsight, perf, AMD μProf, Score-P, TAU,
HPCToolkit.

https://docs.discoverer.bg/index.html

https://docs.discoverer.bg/index.html
https://docs.discoverer.bg/index.html

 19

3.7. Vega

The system is in production since April 2021. The supercomputer is based on Atos
Sequana XH2000, with 1020 compute nodes, which are interconnected with InfiniBand
(Dragonfly+ topology).

Specifications

CPU partition

• 768 CPU nodes, 2 x AMD Rome 7H12 (64c, 2.6 GHz, 280 W), 256 GiB RAM
• 192 CPU nodes, 2 x AMD Rome 7H12 (64c, 2.6 GHz, 280 W), 1 TiB RAM

GPU partition
• 60 GPU nodes 4 x Nvidia A100, 2 x AMD Rome 7H12, 512 GiB RAM

Measurements

Energy is measured on node level and job consumed energy is reported through Slurm
energy accounting (IPMI).
Data from IPMI sensors on node level is available to admins. Kernel module for RAPL
is loaded but not readable for users.

Additional info

Slurm info: 24.11.4; acct_gather_energy/ipmi
Extra tools: NVML
Benchmarking environment: Manual Execution.
Performance analysis: LIKWID, TotalView, Score-P, perf, Intel VTune, PAPI, nways, ...

https://www.izum.si/en/hpc-en/
https://doc.vega.izum.si/energy-usage/

https://www.izum.si/en/hpc-en/
https://doc.vega.izum.si/energy-usage/
https://www.izum.si/en/hpc-en/
https://doc.vega.izum.si/energy-usage/

 20

3.8. Deucalion

Deucalion is a peta-scale EuroHPC supercomputer, supplied by Fujitsu (currently Fsas
Technologies) and in production since June 2024. It is hosted by FCT at Universidade
do Minho in Guimarães, Portugal.
Deucalion has 3 partitions: one partition based on the Fujitsu ARM A64FX processors,
one based on AMD Epyc 7742 processors (2 sockets per node) and an accelerated
partition based on AMD Epyc 7742 accelerated with Nvidia A100 GPUs (4 per node,
including both A100 with 40 and 80 GB of VRAM).
The ARM partition is interconnected with Infiniband HDR Fat-Tree with 1:1.6 blocking
factor and the AMD and GPUs partitions are interconnected with Infiniband HDR Fat-
Tree with 1:1 non-blocking.

Specifications

CPU (A64FX) partition

• 1632 ARM FX700 nodes, Fujitsu’s A64FX (48c, 2.0 GHz), 32 GiB RAM
CPU (x86) partition

• 500 nodes, 2x AMD Epyc 7742 (64c, 2.25 GHz), 256 GiB RAM
GPU partition

• 17 nodes, 4 x Nvidia A100 GPUs (40 GiB GPU memory), 2 x AMD Epyc 7742
(64c, 2.25 GHz), 512 GiB RAM

• 16 nodes, 4 x Nvidia A100 GPUs (80 GiB GPU memory), 2 x AMD Epyc 7742
(64c, 2.25 GHz), 512 GiB RAM

Measurements

Deucalion uses the MERIC energy-efficient HPC software suite, the same as Karolina
(See section 3.5).

Additional info

Slurm info: 23.11.8
Extra tools: MERIC
Benchmarking environment: Manual Execution.
Performance analysis: POP CoE tools (Score-P, Scalasca, MAQAO, DLB, MERIC),
Intel Vtune

https://docs.deucalion.macc.fccn.pt

https://docs.deucalion.macc.fccn.pt/
https://docs.deucalion.macc.fccn.pt/

 21

3.9. JUPITER

JUPITER, the “Joint Undertaking Pioneer for Innovative and Transformative Exascale
Research", will be the first exascale supercomputer in Europe. The system is provided
by a ParTec-Eviden supercomputer consortium and was procured by EuroHPC JU in
cooperation with the Jülich Supercomputing Centre (JSC). It is installed in the
Forschungszentrum Jülich campus in Germany.

Specifications

JUPITER Booster consists of ~6000 standard compute nodes

• 4 × NVIDIA GH200 Grace-Hopper Superchip (see Figure Fout!
Verwijzingsbron niet gevonden.)

o CPU: NVIDIA Grace (Arm Neoverse-V2), 72 cores at 3.1 GHz base
frequency; 120 GB LPDDR5X memory at 512 GB/s (8532 MHz)

o GPU: NVIDIA Hopper H100, 132 multiprocessors, 96 GB HBM3
memory at 4 TB/s

o NVIDIA NVLink-C2C CPU-to-GPU link at 900 GB/s
o TDP: 680 W (for full GH200 superchip)

• NVLink 4 GPU-to-GPU link, 300 GB/s between pairs of GPUs (150 GB/s per
direction)

• Network: 4 × InfiniBand NDR200 (Connect-X7)

Measurements

LLview (see section 4.6) can report power metrics (in Watts) at several levels, i.e.
node power, CPU/GPU power, superchip power.

Additional info

Slurm info:
Extra tools: LLview
Benchmarking environment: JUBE
Performance analysis: Score-P, Scalasca, CUBE, Vampir

Figure 3-1: Node diagram of the 4× NVIDIA GH200 node design of JUPITER Booster.

 22

https://jupiter.fz-juelich.de/
https://llview.fz-juelich.de/

https://jupiter.fz-juelich.de/
https://llview.fz-juelich.de/
https://jupiter.fz-juelich.de/
https://llview.fz-juelich.de/

 23

4. Tools

4.1. Slurm

SLURM is an open-source, fault-tolerant, and highly scalable workload manager
designed for both large and small Linux clusters.

For power management, SLURM offers plugins that collect energy consumption data
on a per-job basis. These plugins can use various hardware interfaces, such as IPMI,
RAPL counters, or external scripts, depending on what is available on the system. The
collected data is stored alongside each job and can be retrieved later using the sacct
command, as described below.

More details about SLURM’s power measurement options can be found in the SLURM
documentation on AcctGatherEnergyType.

In the benchmarks presented in this document, when power data was obtained
through SLURM, we used the following command to report the job type and the
corresponding energy consumption:

sacct -j jobid.0 -o
nnodes,ntasks,ncpus,consumedenergy,consumedenergyraw,elapsed,elapsedraw

4.2. EAR
EAR software is a management framework optimizing the energy and efficiency of a
cluster of interconnected nodes. To improve the energy of the cluster, EAR provides
energy control, accounting, monitoring and optimization of both the applications
running on the cluster and of the overall global cluster.

At EAR’s core is a monitoring tool which gathers data on the nodes and on the
applications running on the cluster. Therefore, on top of optimizing the energy
consumed by the applications running on the cluster and the overall global cluster,
EAR reports system and application information.

EAR components are the EAR library (EARL), EAR DB manager (EARDBD), EAR
Daemon (EARD), EAR Slurm plugin (EARplug) and EAR Global Manager (EARGM).
EAR offers a highly configurable and extensible infrastructure for energy management.
Last version of EAR includes a plugin mechanism to dynamically load power policies,
power and time models, energy readings and application traces generation. To offer a
simple install&test approach, EAR includes default powerful plugins for all these
features. Slurm is the batch scheduler full compatible with EAR thanks to EAR's Slurm
SPANK plug-in. With EAR's Slurm plug-in, running an application with EAR is as easy
as submitting a job with either srun, sbatch or mpirun. The EAR Library (EARL) is
automatically loaded with some applications when EAR is enabled by default.

https://slurm.schedmd.com/slurm.conf.html#OPT_AcctGatherEnergyType
https://slurm.schedmd.com/slurm.conf.html#OPT_AcctGatherEnergyType
https://slurm.schedmd.com/slurm.conf.html#OPT_AcctGatherEnergyType
https://slurm.schedmd.com/slurm.conf.html#OPT_AcctGatherEnergyType

 24

EAR Features

The following list highlights the main functionalities and features provided by EAR.
While the accompanying examples are demonstrated on the Marenostrum 5
supercomputer, these capabilities are designed to be available in any standard
installation of EAR.

EAR job Accounting (eacct)
The eacct command shows accounting information stored in the EAR DB for jobs (and
steps) IDs. The command uses EAR's configuration file to determine if the user
running it is privileged or not, as non-privileged users can only access their
information. It provides the following options.

Usage examples
The basic usage of eacct retrieves the last 20 applications (by default) of the user
executing it. If a user is privileged, they may see all users’ applications. The default
behaviour shows data from each job-step, aggregating the values from each node in
said job-step. If using Slurm as a job manager, a sb (sbatch) job-step is created with
the data from the entire execution. A specific job may be specified with -j option.

For node-specific information, the -l (i.e., long) option provides detailed accounting of
each individual node. If EARL was loaded during an application execution, runtime
data (i.e., EAR loops) may be retrieved by using -r flag. An example of both their usage
is shown below.

To easily transfer the output from eacct, you can use the -c option to save the
requested data in CSV format. This can be done as follows:

Figure 4-1: Output obtained using the eacct command for a specific job.

Figure 4-2: eacct showing detailed accounting of each node.

https://oos.eduuni.fi/ear_team/ear/-/wikis/EAR-commands
https://oos.eduuni.fi/ear_team/ear/-/wikis/EAR-commands

 25

[user@host EAR]$ eacct -j 21382481-c test.csv
Figure 4-3: Saving the output of eacct to test.csv.

If successful, you'll see a message like:

Successfully written applications to csv. Only applications with EARL will have its information
properly written.

Example: Using EAR with Slurm+srun on MareNostrum5
When submi+ng jobs with sbatch, EAR op8ons can be specified using the ear module,
available in both par88ons. For example:

#SBATCH --ear=on # Enable Energy-Aware Run8me (EAR) monitoring
#SBATCH --ear-verbose=1 # Enable verbose EAR output

module load ear # load the ear module
mkdir -p ear_metrics # create directory to store EAR results

srun --ear-user-db=ear_metrics/app_metrics gmx_mpi mdrun -s lignocellulose-rf.tpr -pin on -
noconfout -nsteps 20000 -nstlist 200

Figure 4-4: Example job script using EAR on MareNostrum 5

EAR policies
EAR offers three energy policies plugins: min_energy, min_+me and monitoring. The last one
is not a power policy, is used just for applica8on monitoring where CPU frequency is not
modified (neither memory nor GPU frequency). The energy policy is selected by se+ng the --
ear-policy=policy op8on when submi+ng a Slurm job. A policy parameter, which is a
par8cular value or threshold depending on the policy, can be set using the flag --ear-policy-
th=value.

min_energy
The goal of this policy is to minimise the energy consumed with a limit to the
performance degradation. This limit is set in the Slurm --ear-policy-th option or the
configuration file.

srun --ear-policy=min_energy --ear-user-db=more_test_min_energy/app_metrics gmx_mpi
mdrun -s lignocellulose-rf.tpr -pin on -noconfout -nsteps 20000 -nstlist 200

Figure 4-5: Selecting min_energy in a Slurm job.

min_>me
The goal of this policy is to improve the execution time while guaranteeing a minimum
ratio between performance benefit and frequency increment that justifies the increased
energy consumption from this frequency increment.

For instance, if --ear-policy-th=0.70, EAR will prevent scaling to upper frequencies if
the ratio between performance gain and frequency gain do not improve at least 70%
(PerfGain >= (FreqGain * threshold).

 26

Figure 4-6: Example job script using EAR on MareNostrum 5

srun --ear-policy=min_8me --ear-policy-th=0.70 --ear-user-
db=more_test_min_8me/app_metrics gmx_mpi mdrun -s lignocellulose-rf.tpr -pin on -
noconfout -nsteps 20000 -nstlist 200

Figure 4-7: Selecting min_time policy in a Slurm job.

CPU Frequency selection in EAR
Within EAR, you can manually select a CPU frequency in combination with a specific
optimization policy.

• Use the --ear-policy=policy_name flag to select the desired policy.
• Use the --ear-cpufreq=value flag to specify the desired CPU frequency.

 The value must be provided in kHz (e.g., 2000000 for 2.0 GHz).

We evaluated the performance and energy consumption of GROMACS on two nodes
using different EAR policy and threshold values.

• Without EAR, the performance was 55.856 ns/day.
Min-Time Policy:

• With the default threshold value (--ear-policy-th=0.65), performance was
53.363 ns/day.

• Using --ear-policy-th=0.70, performance slightly decreased to 53.215 ns/day.
Min-Energy Policy:

• With the default threshold (--ear-policy-th=0.05), performance increased to
56.635 ns/day.

• Using a higher threshold (--ear-policy-th=0.10), performance was 55.084
ns/day.

Monitoring Policy (CPU Frequency Scaling):
• At 2.0 GHz, performance was 55.722 ns/day.
• At 1.9 GHz, performance was 56.216 ns/day.
• At 1.8 GHz, performance dropped to 56.138 ns/day.

 27

The energy consumption of GROMACS configuration is shown below:

Configuration Performance

(ns/day)
Energy(J)

GROMACS(No EAR) 55.856 238297
GROMACS(threshold=0.65) 53.363 232404 (min_time)
GROMACS(threshold=0.70) 53.215 219767 (min_time)
GROMACS(threshold=0.05) 56.635 223957 (min_energy)
GROMACS(threshold=0.10) 55.084 218022 (min_energy)
GROMACS(freq=2 GHz) 56.322 207252 (monitoring)
GROMACS(freq=1.9 GHz) 56.216 238364 (monitoring)
GROMACS(freq=1.8 GHz) 56.138 239232 (monitoring)

For a complete guide on EAR policies, refer to the official documentation:
https://gitlab.bsc.es/ear_team/ear/-/wikis/Architecture#policies

Slurm job scripts using EAR can be found in the shortbench repository of EPICURE’s
GitLab (see section 5.1) in
Platforms/MareNostrum5/<partition>/<benchmark>/<benchmark>_job.sh

And the results can be found in
Platforms/MareNostrum5/EAR_metrics/<partition>/<benchmark>/

For a complete user guide on using EAR, refer to the official documentation:
https://gitlab.bsc.es/ear_team/ear/-/wikis/User-guide

4.3. MERIC runtime system

MERIC runtime system from the MERIC energy efficient HPC software suite is one of
the flagship codes of Performance Optimisation and Productivity (POP) EuroHPC
Centre of Excellence (CoE). As a CoE flagship code, the MERIC is being deployed as
public software module to all EuroHPC systems to provide energy consumption
measurement, and in some systems also power management (currently Karolina, and
Deucalion). Thanks to the MERIC, the user has unified interface to read energy
consumption despite the underlying hardware is different, using a hardware-specific
power monitoring system, or the energy consumption is exposed by one of many
possible ways.

The user may use a command line utility to measure energy consumption of an
application complete execution or link the application with MERIC library and
instrument application's regions of interest.

mericStatic -e RAPL,NVML -- start &
/path/to/benchmark [app params]

mericStatic -- stop

https://gitlab.bsc.es/ear_team/ear/-/wikis/Architecture#policies
https://opencode.it4i.eu/epicure/shortbench
https://opencode.it4i.eu/epicure/shortbench
https://gitlab.bsc.es/ear_team/ear/-/wikis/User-guide
https://gitlab.bsc.es/ear_team/ear/-/wikis/Architecture#policies
https://opencode.it4i.eu/epicure/shortbench
https://opencode.it4i.eu/epicure/shortbench
https://gitlab.bsc.es/ear_team/ear/-/wikis/User-guide

 28

mericStatic – eval
Figure 4-8: Example single-node usage of the mericStatic command line utility to measure energy consumption
using RAPL and NVML performance counters.

mpirun -np $nnodes --map-by ppr:1:node mericStatic -e RAPL,NVML -- start &
srun --overlap --ntasks-per-node 1 --nodes $nnodes mericStatic -e RAPL,NVML -- start
&

srun /path/to/benchmark [app params]

mpirun -np $nnodes --map-by ppr:1:node mericStatic -- stop# srun --ntasks-per-node 1 --
nodes $nnodes mericStatic -- stop

mericStatic – eval

Figure 4-9: Example multi-node usage of the mericStatic command line utility using srun or mpirun to start and
stop the measurement in all allocated nodes ($nnodes).

Runtime [s] = 279.835
PCKG_ACTIVE_CORES_AVG_0 [J] = 858.128
PCKG_ACTIVE_CORES_AVG_1 [J] = 837.706
PCKG_0 [J] = 58676.202
PCKG_1 [J] = 59319.097

RAPL Energy consumption [J] = 117995.299
RAPL Energy consumption [Wh] = 32.776

Runtime [s] = 279.835
GPU_0 [J] = 21789.773
GPU_1 [J] = 22634.641
GPU_2 [J] = 21576.006
GPU_3 [J] = 21356.166
GPU_4 [J] = 20476.886
GPU_5 [J] = 20994.002
GPU_6 [J] = 20145.965
GPU_7 [J] = 21866.124

NVML Energy consumption [J] = 170839.563
NVML Energy consumption [Wh] = 47.455

Figure 4-10: Example output of the mericStatic -- stop command from a single node of Karolina equipped with
two AMD EPYC CPUs and eight Nvidia GPUs (benchmark executed in two compute nodes).

job_id :2685249
job_id :2685249
Max Runtime [s] = 279.881
NVML Energy consumption [J] = 338331.189
RAPL Energy consumption [J] = 235217.793

Total Energy consumption [J] = 573548.982
Total Energy consumption [Wh] = 159.319

Figure 4-11: Example output of the mericStatic -- eval command summarising measurement from all used
compute nodes (the same measurement as in Figure 4-10).

MERIC requires that user specify what power monitoring to use. Thus, user must know
which ones are available in the system. For that purpose, the user may use the

 29

systemInfo MERIC utility, which prints details about the underlying hardware and its
power monitoring and power management possibilities.

SYSTEM INFORMATION
 CPU name: AMD EPYC 7763 64-Core Processor
 Sockets per Node: 2
 Cores per Socket: 64
 Threads per Core: 1
 GPU name: NVIDIA A100-SXM4-40GB
 GPUs per node: 8

CPU FREQUENCIES
 Turbo CPU core frequencies: 3525000 kHz
 Nominal CPU core frequency: 2450000 kHz

GPU FREQUENCIES
 Memory: 1215000 kHz SM: 1410000 - 210000 kHz (81 steps)
 Default memory frequency: 1215000 kHz
 Default streaming multiprocessor frequency: 1095000 kHz

CPU POWER LIMITS
 CPU max power limit: 280 W
 CPU power limit: 280 W

GPU POWER LIMITS
 GPU max power limit: 400 W
 GPU min power limit: 100 W
 GPU default power limit: 400 W

AVAILABLE POWER MONITORING SYSTEMS
 RAPL
 NVML

Figure 4-12: Output of the systemInfo utility when executed in a Karolina accelerated node.

Slurm job scripts using mericStatic utility can be found in the shortbench repository of
EPICURE’s GitLab (see section 5.1) in
Platforms/Karolina/<partition>/<benchmark>/<benchmark>_job_meric.sh.

See MERIC runtime system user guide for more information on how to use MERIC to
instrument an application, and how use MERIC to optimize an application energy
efficiency.
https://code.it4i.cz/energy-efficiency/meric-suite/meric

4.4. COUNTDOWN

COUNTDOWN is a power management tool able to track MPI and application phases
to automatically reduce power consumption of the computing elements during MPI
communication and synchronization. The tool intercepts all MPI calls and execute the
communication via an equivalent PMPI call, but after and before a prologue and an
epilogue routine. These routines are defined in the “profile” and “event” COUNTDOWN

https://opencode.it4i.eu/epicure/shortbench
https://code.it4i.cz/energy-efficiency/meric-suite/meric
https://opencode.it4i.eu/epicure/shortbench
https://code.it4i.cz/energy-efficiency/meric-suite/meric

 30

modules, supporting monitoring and power management, respectively. Environment
variables can be set to control the kind of HW performance counter, the configuration
of the monitoring/management or the verbosity of logging. COUNTDOWN can be
preloaded at runtime without source code modifications, or if needed it also provides
a static-linking library to be used at compile time.
COUNTDOWN implements three complementary profiling strategies to monitor
application behaviour at varying levels of granularity:

1. MPI Profiler: This component collects detailed information about the MPI
activity of each process. It records MPI communicators, groups, and the core
ID where the process is running. These metrics help characterize
communication behaviour and detect potential inefficiencies.

2. Fine-Grain Micro-Architectural Profiler: Running in parallel with the MPI
profiler, this component gathers micro-architectural metrics at every MPI call
using the RDPMC instruction in user space to access Intel’s Performance
Monitoring Units (PMUs). It records values such as average core frequency,
Time Stamp Counter (TSC), and instructions retired. Up to 8 configurable
counters are available, allowing users to monitor application-specific low-level
performance events. This fine-grain insight is valuable for identifying
computational inefficiencies within MPI regions.

3. Coarse-Grain Profiler: This profiler samples a broader range of hardware
performance counters, including TSC, instructions retired, frequency,
temperature, and C-state residencies at both core and uncore levels. It also
monitors energy consumption and power usage using Intel’s Running Average
Power Limit (RAPL) interface. Because access to these low-level hardware
counters typically requires elevated privileges, COUNTDOWN uses the MSR
SAFE driver. This driver enables secure access for standard users to a
restricted subset of privileged architecture registers without compromising
system security. Due to the overhead of frequent sampling, this profiler
operates on a time-based interval: data is collected only if a predefined time Ts
has passed since the last sample. The fine-grain profiler checks this interval
and, if exceeded, triggers a new coarse-grain sample to maintain
synchronization.

Detailed data from the MPI profiler is stored in binary format to manage file size during
long executions. In parallel, a human-readable text summary is also generated to
provide an accessible overview of profiling results.

CNTD source code can be downloaded from:
https://github.com/EEESlab/countdown.git.

The installation, using cmake, must be configured with the same MPI and compiler
used for the application. A basic installation on Leonardo Booster can be achieved, for
example, with the following commands

module purge
module load openmpi/4.1.6--gcc--12.2.0
module load cuda/12.1
cmake -DCNTD_ENABLE_CUDA=ON ../
make

Figure 4-13: Basic installation of CNTD.

https://github.com/EEESlab/countdown.git
https://github.com/EEESlab/countdown.git

 31

where -DCNTD_ENABLE_CUDA=ON is needed to profile GPU metrics. For additional
configuration options, the user can rely on installation instructions in
https://github.com/EEESlab/countdown/blob/develop/README.md.

For the sampling approach of CNTD, the user needs to preload the library libcntd.so;
the measurement can be customized with parameters setting, for example, the
sampling interval and the name of the output directory.

#!/bin/bash
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=4
#SBATCH --cpus-per-task=8
#SBATCH --time=00:20:00
#SBATCH --exclusive
#SBATCH --gres=gpu:4
#SBATCH --partition=boost_usr_prod

module purge
module load profile/lifesc
module load gromacs/2022.3--openmpi--4.1.6--gcc--12.2.0-cuda-12.1

export OMP_NUM_THREADS=8
export OMP_PLACES=cores
export OMP_PROC_BIND=close

export GMX_ENABLE_DIRECT_GPU_COMM=1

export CNTD_SAMPLING_TIME=0.1
export CNTD_OUTPUT_DIR=CNTD
export LD_PRELOAD=<path-to-installation>/src/libcntd.so

srun -n 4 --cpu-bind=cores --cpus-per-task=$Slurm_CPUS_PER_TASK gmx_mpi mdrun -s
lignocellulose-rf.tpr -pin on -noconfout -nsteps 20000 -nstlist 200 -dlb yes

Figure 4-14: Example job script using CNTD.

The default measurement configuration will provide tables with the following metrics:
• Execution time
• Parallel information (number of MPI tasks, GPUs, nodes)
• Energy of the job (PKG, DRAM, GPU)
• Average power (PKG, DRAM, GPU)
• Performance information (Time in MPI communications, maxmemory usage,

CPU frequency, ...)
• GPU reporting (utilization, memory, temperature)
• More detailed information about MPI

4.5. RAPL and NVIDIA NVML

Intel and AMD performance counters exposed using Perf, intel_rapl, amd_energy,
msr_safe, EAR, MERIC, GEOPM, COUNTDOWN, and many more. Each EuroHPC
site uses a different interface to expose these counters. MERIC provides unified way
to read RAPL from them all – once deployed. Deployment currently in progress with
support of EPICURE Project: 78 - EHPC-DEV-2024D09-054.
Similarly, information provided by NVML is used by MERIC and COUNTDOWN.

https://github.com/EEESlab/countdown/blob/develop/README.md
https://github.com/EEESlab/countdown/blob/develop/README.md

 32

4.6. Dashboards

BSC HPC | User Portal

The HPC User Portal (https://hpcportal.bsc.es/) is a job and resource monitoring
platform designed with the needs of HPC users in mind. It allows users to check the
status and general resource usage metrics of their submitted jobs. In addition, the
portal provides machine statistics, such as the number of available and allocated
CPUs, for BSC's primary HPC systems. The platform is still under active development
and will progressively offer more features over time. Currently, for the Accelerated
(ACC) partition, power consumption data is not yet available, but it is being worked on.
Some of the features provided by HPC portal are listed below:

Job monitoring
The main page of the HPC User Portal is the job monitoring screen. It will list all your
jobs launched in all the machines by every account you have. This list contains a brief
listing of the general characteristics of each job (like its name, user, status, node/task
configuration...). If the job listed is in the “running” status, it will also show you the
current CPU and memory usage.

Once a specific job is selected, we get the job details:

Figure 4-15: Main page of the HPC User Portal.

https://hpcportal.bsc.es/
https://hpcportal.bsc.es/

 33

CPU usage, Memory usage and Power consumption are also provided.

Figure 4-17: CPU usage.

Figure 4-18: Memory usage.

Figure 4-16: Job details.

Figure 4-19: Power consumption.

 34

LLview

LLview is a set of software components for monitoring clusters controlled by a
resource manager and scheduler system. It collects existing data from the system and
presents it to the user via a web portal. (https://llview.fz-juelich.de/)

At JSC, LLview collects data from the Slurm workload manager, various daemons
running on compute nodes, and sensors that either log information to files or interface
with the Prometheus monitoring system. LLview then aggregates and reorganises the
monitoring data, stores the information required for reporting in separate SQLite
databases and presents it to the user via a web-based front-end portal.
The LLview Job Reporting web portal provides:

• job list tables, containing their aggregated performance information (for jobs
that are running or have already finished within three weeks).

• timeline graphs per job for the key performance metrics.
• access to detailed job reports, including an interactive report or a static PDF

version.
• role-based access to different levels of information.
• live view of the system.

In Figure 4-20, a snapshot of the Jobs Dashboard shows a table with one job per
row and each column containing one of its metrics. Some columns are colour coded
to indicate potential problems. Detailed job reports can be accessed in the rightmost
columns. Selecting a row displays aggregated graphs at the bottom of the page.

The dashboard provides a wide range of metrics, grouped into the following
categories:

Figure 4-20: LLview Job reporting web portal.

https://llview.fz-juelich.de/
https://llview.fz-juelich.de/

 35

• Job metadata (e.g. Job ID, username, project id, start time, estimated end
time).

• CPU (e.g. average CPU usage, number of active physical/logical cores,
memory usage).

• GPU (e.g. GPU utilization, memory usage, temperature and performance
states, indicators for potential throttling or reduced performance).

• I/O and network activity (e.g. read/write throughput, file open/close operation
rates, data and packet input/output rates).

This comprehensive set of metrics enables users to monitor system performance,
detect inefficiencies, and troubleshoot job behaviour effectively.

A significant recent enhancement to the LLview is the support for multiple levels of
power telemetry data. This addition allows granular and comprehensive tracking of
power consumption during job execution. Currently supported power metrics include:

• Node Power: the total power draw for the entire node at the moment of
sampling.

• CPU Power: the instantaneous power consumed by the CPU package,
including its memory controllers and system I/O.

• GPU Power: the current power draw of each GPU device, including its onboard
memory.

• Superchip Power: the power usage for each “superchip” (i.e. combined Grace
and Hopper modules).

Energy consumption is calculated by aggregating power consumption data collected
at one-minute intervals throughout the duration of a job. The resulting energy values
are presented in a variety of units, including watt-hours (Wh), megajoules (MJ) and
kilowatt-hours (kWh), providing flexibility for different analysis needs.

Figure 4-21 illustrates the display of power and energy values on the LLview web
portal. The metrics highlighted within the red frame represent power and energy
values, with each row corresponding to an individual job. For the currently selected
job (indicated by the yellow highlighted row), detailed energy metric timelines are
displayed at the bottom. These timelines provide a temporal view of power
consumption, simplifying analysis of energy usage patterns throughout the job's
execution.

 36

IT4Innovations User Portal and SCS Information System

For information about the current clusters’ usage, IT4I users can go to User Portal
https://extranet.it4i.cz/rsweb. They can switch between the clusters by clicking on their
names in the upper right corner. Users can filter their search by clicking on the
respective keywords.

In addition to general information about the jobs, like runtime, queue, etc., the portal
now also contains information about CPU, GPU, and entire node energy consumption
for any job. Users can also check the power consumption timeline of selected
components of the compute nodes. Examples of these reports are shown in the figures
below.

Superchip Power

Node Power
Hopper (GPU) Power

Grace (CPU) Power Cap

Grace (CPU) Power

Power values and
energy estimation per job

Figure 4-21: Power and energy values displayed on LLview web portal.

https://extranet.it4i.cz/rsweb
https://extranet.it4i.cz/rsweb

 37

The IT4Innovations Information System (SCS IS) is a comprehensive platform for
managing the lifecycle of HPC projects. It allows users and primary investigators to
manage project applications, memberships, and resources from the initial request
through to completion.

Figure 4-22: Example of job information provided to users, including energy consumption of CPUs and GPUs.

Figure 4-23: Users can also visualize the power consumption of their job in time. This example shows the power
consumption of individual GPUs on a selected compute node.

 38

During the project's active phase, the system provides detailed monitoring capabilities.
This includes tracking the usage of allocated computing resources, which are
measured in NodeHours, against the approved allocation. As shown in the provided
image, the system also offers a specific “Energy Consumption” report. This report
details the energy used in Megajoules (MJ) and Kilowatt-hours (kWh), and the
associated carbon footprint in CO₂ (kg), with data broken down by CPU, GPU, and
Node usage.

Figure 4-24: Example of energy consumption of CPUs, GPUs and nodes per project.

 39

5. Overview

Since not all machines use the same metrics (see the “Measurements” section for the
different machines), the plots shown are just an indication. Moreover, energy usage
by e.g. network components or storage is not measured. If in the future one runtime
system would be available on all machines, it would be easier to compare. We also
learned that the sampling frequency for the metrics might influence the results
significantly.

All runs always use full nodes. The most optimal configuration on one node
(combination of MPI ranks, threads and GPUs if applicable) is taken as a baseline.
This configuration is used in subsequent runs on two, four, eight, … nodes. Consider
that the graphs show always the number of nodes, irrespective of the number of CPU
cores or GPUs that might be different in the machines.

It becomes clear from the graphs, if not known already, that it does not make sense to
keep increasing the number of nodes hoping that computations will finish more rapidly
at a much lower energy cost. And it is important to determine the most optimal
combination of MPI ranks, threads and GPUs before submitting a whole bunch of
computations.

For GROMACS, CP2K and NAMD, we show following plots:

• “Performance-Energy” plot per machine,
• “Energy usage” for all machines.

In addition, we also show for GROMACS and NAMD

• “Normalized energy usage per ns/day”.

All the data shown in the graphs and tables in the following sections are available in
the different Platform folders of the shortbench repository of EPICURE’s GitLab. The
Excel file combining all data can be found there as well.

5.1. Job script examples

The table below contains references to job script examples used for application
executions with power energy measurements. For some machines only the regular
Slurm scripts are available. For others, the example scripts (also) contain references
to external systems (MareNostrum5, EAR; Leonardo, CINEMON and COUNTDOWN;
Karolina, MERIC).

https://opencode.it4i.eu/epicure/shortbench
https://opencode.it4i.eu/epicure/shortbench

 40

Machine

Application

Partition
(library)

Job script example

MareNostrum5 GROMACS CPU-X86
(EAR)

MN5-GROMACS-CPU-X86 example

GPU
(EAR)

MN5-GROMACS-GPU example

CP2K CPU-X86
(EAR)

MN5-CP2K-CPU-X86 example

GPU
(EAR)

MN5-CP2K-GPU example

NAMD CPU-X86
(EAR)

MN5-NAMD-CPU-X86 example

GPU
(EAR)

MN5-NAMD-GPU example

DECAULION GROMACS CPU-X86

DECAULION-GROMACS-CPU-X86
example

CPU-ARM DECAULION-GROMACS-CPU-ARM
example

GPU DECAULION-GROMACS-GPU
example

CP2K CPU-X86 DECAULION-CP2K-CPU-X86
example

CPU-ARM DECAULION-CP2K-CPU-ARM
example

GPU DECAULION-CP2K-GPU example
NAMD CPU-X86 DECAULION-NAMD-CPU-X86

example
CPU-ARM N/A
GPU DECAULION-NAMD-GPU example

JEDI GROMACS GPU JEDI-GROMACS-GPU example
MELUXINA GROMACS CPU-X86 MELUXINA-GROMACS-CPU-X86

example
GPU MELUXINA-GROMACS-GPU

example
CP2K GPU-X86 MELUXINA-CP2K-CPU-X86 example

GPU MELUXINA-CP2K-GPU example
NAMD CPU-X86 MELUXINA-NAMD-CPU-X86 example

GPU MELUXINA-NAMD-GPU example
VEGA GROMACS CPU VEGA-GROMACS-CPU-X86 example

GPU VEGA-GROMACS-GPU example
CP2K CPU VEGA-CP2K-CPU-X86 example

GPU VEGA-CP2K-GPU example
NAMD CPU VEGA-NAMD-CPU-X86 example

GPU VEGA-NAMD-GPU example
CINECA GROMACS CPU

(CINEMON)
CINECA-GROMACS-CPU-X86
example

GPU CINECA-GROMACS-GPU example

https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MareNostrum5/GPP/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MareNostrum5/ACC/GROMACS/gromacs_job.sh?ref_type=heads
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MareNostrum5/GPP/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MareNostrum5/ACC/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MareNostrum5/GPP/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MareNostrum5/ACC/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/X86/GROMACS/gromacs.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/X86/GROMACS/gromacs.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/ARM/GROMACS/gromacs.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/ARM/GROMACS/gromacs.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/GPU/GROMACS/gromacs.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/GPU/GROMACS/gromacs.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/X86/CP2K/cp2k_jube_run
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/X86/CP2K/cp2k_jube_run
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/ARM/CP2K/cp2k_jube_run
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/ARM/CP2K/cp2k_jube_run
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/GPU/CP2K/cp2k_jube_run
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/GPU/NAMD_memopt/namd.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/GPU/NAMD_memopt/namd.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/GPU/NAMD_memopt/namd.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/Deucalion/Platforms/JEDI/ACC/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/CPU/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/CPU/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/GPU/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/GPU/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/CPU/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/GPU/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/GPU/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/GPU/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Vega/GPP/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Vega/ACC/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Vega/GPP/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Vega/ACC/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Vega/GPP/NAMD/namd_job_adjusted.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Vega/ACC/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/DCGP/GROMACS/cinemon/logfiles/000000/000000_submit_N1np56/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/DCGP/GROMACS/cinemon/logfiles/000000/000000_submit_N1np56/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/BOOSTER/GROMACS/cinemon/logfiles/000000/000000_submit_N1np4/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MareNostrum5/GPP/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MareNostrum5/ACC/GROMACS/gromacs_job.sh?ref_type=heads
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MareNostrum5/GPP/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MareNostrum5/ACC/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MareNostrum5/GPP/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MareNostrum5/ACC/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/X86/GROMACS/gromacs.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/X86/GROMACS/gromacs.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/ARM/GROMACS/gromacs.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/ARM/GROMACS/gromacs.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/GPU/GROMACS/gromacs.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/GPU/GROMACS/gromacs.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/X86/CP2K/cp2k_jube_run
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/X86/CP2K/cp2k_jube_run
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/ARM/CP2K/cp2k_jube_run
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/ARM/CP2K/cp2k_jube_run
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/GPU/CP2K/cp2k_jube_run
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/GPU/NAMD_memopt/namd.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/GPU/NAMD_memopt/namd.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/GPU/NAMD_memopt/namd.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/Deucalion/Platforms/JEDI/ACC/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/CPU/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/CPU/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/GPU/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/GPU/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/CPU/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/GPU/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/GPU/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/GPU/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Vega/GPP/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Vega/ACC/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Vega/GPP/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Vega/ACC/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Vega/GPP/NAMD/namd_job_adjusted.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Vega/ACC/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/DCGP/GROMACS/cinemon/logfiles/000000/000000_submit_N1np56/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/DCGP/GROMACS/cinemon/logfiles/000000/000000_submit_N1np56/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/BOOSTER/GROMACS/cinemon/logfiles/000000/000000_submit_N1np4/work/submit.job

 41

(CINEMON)
GPU
(COUNTDOWN)

CINECA-GROMACS-GPU example

CP2K CPU
(CINEMON)

CINECA-CP2K-CPU-X86 example

GPU
(CINEMON)

CINECA-CP2K-GPU example

GPU
(COUNTDOWN)

CINECA-CP2K-GPU example

NAMD CPU
(COUNTDOWN)

CINECA-NAMD-CPU-X86 example

GPU
(CINEMON)

CINECA-NAMD-GPU example

KAROLINA GROMACS CPU KAROLINA-GROMACS-CPU-X86
example

CPU (MERIC) KAROLINA-GROMACS-CPU-X86
example

GPU KAROLINA-GROMACS-GPU
example

GPU
(MERIC)

KAROLINA-GROMACS-GPU
example

CP2K CPU KAROLINA-CP2K-CPU-X86 example
CPU
(MERIC)

KAROLINA-CP2K-CPU-X86 example

GPU KAROLINA-CP2K-GPU example
GPU
(MERIC)

KAROLINA-CP2K-GPU example

NAMD CPU KAROLINA-NAMD-CPU-X86 example
CPU
(MERIC)

KAROLINA-NAMD-CPU-X86 example

GPU KAROLINA-NAMD-GPU example
GPU
(MERIC)

KAROLINA-NAMD-GPU example

LUMI GROMACS CPU LUMI-GROMACS-CPU-X86 example
GPU LUMI-GROMACS-GPU example

CP2K CPU LUMI-CP2K-CPU-X86 example
GPU LUMI-CP2K-GPU example

NAMD CPU LUMI-NAMD-CPU-X86 example
GPU LUMI-NAMD-GPU example

DISCOVER GROMACS

CPU DISCOVER-GROMACS-CPU-X86
example

CP2K CPU DISCOVER-CP2K-CPU-X86 example
NAMD CPU DISCOVER-NAMD-CPU-X86

example

https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/BOOSTER/GROMACS/countdown/logfiles/000001/000000_submit_N1np4/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/DCGP/CP2K/cinemon/logfiles/000000/000000_submit_N1np56/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/BOOSTER/CP2K/cinemon/logfiles/000000/000000_submit_N1np4/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/BOOSTER/CP2K/countdown/logfiles/000000/000000_submit_N1np4/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/DCGP/NAMD/cinemon/logfiles/000000/000000_submit_N1np56/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/BOOSTER/NAMD/cinemon/logfiles/000000/000000_submit_N1np4/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/GROMACS/gromacs_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/GROMACS/gromacs_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/GROMACS/gromacs_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/GROMACS/gromacs_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/CP2K/cp2k_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/CP2K/cp2k_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/NAMD/namd_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/NAMD/namd_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/LUMI/LUMI-C/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/LUMI/LUMI-C/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/LUMI/LUMI-C/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/LUMI/LUMI-G/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/LUMI/LUMI-C/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/LUMI/LUMI-G/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/discoverer/Platforms/Discoverer/GPP/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/discoverer/Platforms/Discoverer/GPP/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/discoverer/Platforms/Discoverer/GPP/CP2K/cp2k_job.batch
https://opencode.it4i.eu/epicure/shortbench/-/raw/discoverer/Platforms/Discoverer/GPP/NAMD/namd_job.sbatch
https://opencode.it4i.eu/epicure/shortbench/-/raw/discoverer/Platforms/Discoverer/GPP/NAMD/namd_job.sbatch
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/BOOSTER/GROMACS/countdown/logfiles/000001/000000_submit_N1np4/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/DCGP/CP2K/cinemon/logfiles/000000/000000_submit_N1np56/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/BOOSTER/CP2K/cinemon/logfiles/000000/000000_submit_N1np4/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/BOOSTER/CP2K/countdown/logfiles/000000/000000_submit_N1np4/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/DCGP/NAMD/cinemon/logfiles/000000/000000_submit_N1np56/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/BOOSTER/NAMD/cinemon/logfiles/000000/000000_submit_N1np4/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/GROMACS/gromacs_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/GROMACS/gromacs_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/GROMACS/gromacs_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/GROMACS/gromacs_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/CP2K/cp2k_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/CP2K/cp2k_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/NAMD/namd_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/NAMD/namd_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/LUMI/LUMI-C/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/LUMI/LUMI-C/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/LUMI/LUMI-C/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/LUMI/LUMI-G/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/LUMI/LUMI-C/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/LUMI/LUMI-G/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/discoverer/Platforms/Discoverer/GPP/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/discoverer/Platforms/Discoverer/GPP/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/discoverer/Platforms/Discoverer/GPP/CP2K/cp2k_job.batch
https://opencode.it4i.eu/epicure/shortbench/-/raw/discoverer/Platforms/Discoverer/GPP/NAMD/namd_job.sbatch
https://opencode.it4i.eu/epicure/shortbench/-/raw/discoverer/Platforms/Discoverer/GPP/NAMD/namd_job.sbatch

 42

5.2. Performance-energy graph

This graph shows both the normalized performance and the energy. Both quantities
are plotted such that they start in the same point, at the baseline. From this baseline
quantity, a dotted line is drawn. The graph has two y-axes, on the left and the right of
the graph, where the normalized performance and total energy consumption are given
respectively.

The normalized performance is obtained by dividing the performance by the number
of nodes used for that calculation. The resulting quantity, the normalized performance,
is an indication for the computation time if the equivalent calculation is performed on
the baseline system of 1 node. This value is expressed in units of [ns/day/node].
Example: if the performance is 12,90 ns/day on two nodes, it is shown as 12,90 / 2 =
6,45 ns/day/node.

The energy on the graph is the total energy consumption reported for the number of
nodes, expressed in [kJ]. This quantity does not need to be rescaled as the same
calculation is performed on the different systems number of nodes. In general, more
nodes require less computation time but more simultaneous power consumption, such
that the overall energy consumption is in general larger for multiple nodes.

For the CP2K calculations, the efficiency is taken, with the lowest node number as the
baseline of 100%.

In general, the efficiency or performance of the calculation will go down on multiple
nodes, the energy consumption will increase. The values will go further away from the
baseline. In the ideal cases, both lines would stay as close to the dotted line as
possible.

 43

CPU
GROMACS

Figure 5-1: Graphs for GROMACS CPU.

0
50
100
150
200
250
300
350
400
450

0

1

2

3
4

5

6
7

8

9

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
[k

J]

Pe
rf

or
m

an
ce

 [n
s/

da
y/

no
de

]

nodes

GROMACS/CPU - LUMI

Performance Energy

0
50
100
150
200
250
300
350
400
450

0

1

2

3

4

5

6

7

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
[k

J]

Pe
rf

or
m

an
ce

 [n
s/

da
y/

no
de

]

nodes

GROMACS/CPU - MeluXina

Performance Energy

0

100

200

300

400

500

600

700
800

0

1

2

3

4

5

6

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
[k

J]

Pe
rf

or
m

an
ce

 [n
s/

da
y/

no
de

]

nodes

GROMACS/CPU - Vega

Performance Energy

0

50

100

150

200

250

300

350

400

0

1

2

3

4

5

6

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
[k

J]

Pe
rf

or
m

an
ce

 [n
s/

da
y/

no
de

]

nodes

GROMACS/CPU - Karolina

Performance Energy

0

100

200

300

400

500

600

700

800

0

2

4

6
8

10

12
14

16

18

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
[k

J]

Pe
rf

or
m

an
ce

 [n
s/

da
y/

no
de

]

nodes

GROMACS/CPU - MN5

Performance Energy

0
100
200
300
400
500
600
700
800
900

0

5

10

15

20

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
[k

J]

Pe
rf

or
m

an
ce

 [n
s/

da
y/

no
de

]

nodes

GROMACS/CPU - Leonardo

Performance Energy

0

100

200

300

400

500

0

1
2

3

4

5

6
7

8
9

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
[k

J]

Pe
rf

or
m

an
ce

 [n
s/

da
y/

no
de

]

nodes

GROMACS/CPU - Deucalion

Performance Energy

0

100

200

300

400

500

0

2

4

6

8

10

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
[k

J]

Pe
rf

or
m

an
ce

 [n
s/

da
y/

no
de

]

nodes

GROMACS/CPU - Discoverer

Performance Energy

 44

CP2K

Figure 5-2: Graphs for CP2K CPU.

0

100

200

300

400

500

600

700

0

50

100

150

200

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
[k

J]

Effi
ci

en
cy

 (%
)

nodes

CP2K/CPU - LUMI

Efficiency Consumed Energy [kJ]

0

100

200

300

400

500

600

0

50

100

150

200

250

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
[k

J]

Effi
ci

en
cy

 (%
)

nodes

CP2K/CPU - MeluXina

Efficiency Consumed Energy [kJ]

0

100

200

300

400

500

600

700

0

100

200

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
[k

J]

Effi
ci

en
cy

 (%
)

nodes

CP2K/CPU - Vega

Efficiency Consumed Energy [kJ]

0

100

200

300

400

500

0

50

100

150

200

250

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
[k

J]

Effi
ci

en
cy

 (%
)

nodes

CP2K/CPU - Karolina

Efficiency Consumed Energy [kJ]

0

50

100

150

200

250

300

350

0

20

40

60

80

100

120

140

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
[k

J]

Effi
ci

en
cy

 (%
)

nodes

CP2K/CPU - MN5

Efficiency Consumed Energy [kJ]

0

200

400

600

800

1000

1200

1400

0
50

100
150

200
250
300
350
400
450

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
[k

J]

Effi
ci

en
cy

 (%
)

nodes

CP2K/CPU - Leonardo

Efficiency Consumed Energy [kJ]

0
50
100
150
200
250
300
350
400
450

0

50

100

150

200

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
[k

J]

Effi
ci

en
cy

 (%
)

nodes

CP2K/CPU - Deucalion

Efficiency Consumed Energy [kJ]

0

100
200

300
400

500
600

700

0

50

100

150

200

250

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
[k

J]

Effi
ci

en
cy

 (%
)

nodes

CP2K/CPU - Discoverer

Efficiency Consumed Energy [kJ]

 45

NAMD

Figure 5-3: Graphs for NAMD CPU.

0

200

400

600

800

1000

1200

1400

0

20

40

60

80

100

120

140

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
(k

J)

Pe
rf

or
m

an
ce

 (µ
s/

da
y/

no
de

)

nodes

NAMD/CPU - LUMI

Performance Energy

0

200

400

600

800

1000

1200

0

20

40

60

80

100

120

140

160

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
(k

J)

Pe
rf

or
m

an
ce

 (µ
s/

da
y/

no
de

)

nodes

NAMD/CPU - MeluXina

Performance Energy

0
200
400

600
800
1000
1200

1400

0

20

40

60

80

100

120

140

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
(k

J)

Pe
rf

or
m

an
ce

 (µ
s/

da
y/

no
de

)

nodes

NAMD/CPU - Vega

Performance Energy

0

200

400

600

800

1000

1200

1400

0

20

40

60

80

100

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
(k

J)

Pe
rf

or
m

an
ce

 (µ
s/

da
y/

no
de

)

nodes

NAMD/CPU - Karolina

Performance Energy

0

500

1000

1500

2000

2500

0

20

40

60

80

100

120

140

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
(k

J)

Pe
rf

or
m

an
ce

 (µ
s/

da
y/

no
de

)

nodes

NAMD/CPU - MN5

Performance Energy

0
200
400
600
800
1000
1200
1400
1600
1800

0

20

40

60

80

100

120

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
(k

J)

Pe
rf

or
m

an
ce

 (µ
s/

da
y/

no
de

)

nodes

NAMD/CPU - Leonardo

Performance Energy

0
200
400
600
800
1000
1200
1400
1600
1800

0

20

40

60

80

100

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
(k

J)

Pe
rf

or
m

an
ce

 (µ
s/

da
y/

no
de

)

nodes

NAMD/CPU - Deucalion

Performance Energy

0

500

1000

1500

2000

0

50

100

150

200

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
(k

J)

Pe
rf

or
m

an
ce

 (µ
s/

da
y/

no
de

)

nodes

NAMD/CPU - Discoverer

Performance Energy

 46

GPU
GROMACS

Figure 5-4: Graphs for GROMACS GPU.

0

100

200

300

400

500

600

0

20

40

60

80

100

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
(k

J)

Pe
rf

or
m

an
ce

 (n
s/

da
y/

no
de

)

nodes

GROMACS/GPU - LUMI

Performance Energy

0

50

100

150

200

250

300

350

0

10

20

30

40

50

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
(k

J)

Pe
rf

or
m

an
ce

 (n
s/

da
y/

no
de

)

nodes

GROMACS/GPU - MeluXina

Performance Energy

0

100

200

300

400

500

600

700

800

0

20

40

60

80

100

1 2 4 8 16 32

C
on

su
m

ed
 E

ne
rg

y
(k

J)

Pe
rf

or
m

an
ce

 (n
s/

da
y/

no
de

)

nodes

GROMACS/GPU - Vega

Performance Energy

0

100

200

300

400

500

600

0

10

20

30

40

50

60

70

80

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
(k

J)

Pe
rf

or
m

an
ce

 (n
s/

da
y/

no
de

)

nodes

GROMACS/GPU - Karolina

Performance Energy

0

100

200

300

400

500

600

700

800

0

50

100

150

200

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
(k

J)

Pe
rf

or
m

an
ce

 (n
s/

da
y/

no
de

)

nodes

GROMACS/GPU - MN5

Performance Energy

0

50

100

150

200

250

300

0

5

10

15

20

25

30

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
(k

J)

Pe
rf

or
m

an
ce

 (n
s/

da
y/

no
de

)

nodes

GROMACS/GPU - Leonardo

Performance Energy

0

100

200

300

400

0

10

20

30

40

1 2 4

C
on

su
m

ed
 E

ne
rg

y
(k

J)

Pe
rf

or
m

an
ce

 (n
s/

da
y/

no
de

)

nodes

GROMACS/GPU - Deucalion

Performance Energy

0

200

400

600

800

1000

0

50

100

150

200

250

300

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
(k

J)

Pe
rf

or
m

an
ce

 (n
s/

da
y/

no
de

)

nodes

GROMACS/GPU - JEDI

Performance Energy

 47

CP2K

Figure 5-5: Graphs for CP2K GPU.

0

100

200

300

400

500

600

700

0

50

100

150

200

250

300

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
[k

J]

Effi
ci

en
cy

 (%
)

nodes

CP2K/GPU - LUMI

Efficiency Consumed Energy [kJ]

0

200

400

600

800

1000

0
50

100
150

200
250
300
350
400
450

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
[k

J]

Effi
ci

en
cy

 (%
)

nodes

CP2K/GPU - MeluXina

Efficiency Consumed Energy [kJ]

0

200

400

600

800

1000

1200

0

100

200

300

400

500

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
[k

J]

Effi
ci

en
cy

 (%
)

nodes

CP2K/GPU - Vega

Efficiency Consumed Energy [kJ]

0

500

1000

1500

2000

0

100

200

300

400

500

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
[k

J]

Effi
ci

en
cy

 (%
)

nodes

CP2K/GPU - Karolina

Efficiency Consumed Energy [kJ]

0

200

400

600

800

1000

1200

1400

1600

0

100

200

300

400

500

600

700

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
[k

J]

Effi
ci

en
cy

 (%
)

nodes

CP2K/GPU - MN5

Efficiency Consumed Energy [kJ]

0

100

200

300

400

500

0

50

100

150

200

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
[k

J]

Effi
ci

en
cy

 (%
)

nodes

CP2K/GPU - Leonardo

Efficiency Consumed Energy [kJ]

0

100

200

300

400

500

600

0

50

100

150

200

1 2 4

C
on

su
m

ed
 E

ne
rg

y
[k

J]

Effi
ci

en
cy

 (%
)

nodes

CP2K/GPU - Deucalion

Efficiency Consumed Energy [kJ]

 48

NAMD

Figure 5-6: Graphs for NAMD GPU.

0

100

200

300

400

500

600

700

800

0

100

200

300

400

500

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
(k

J)

Pe
rf

or
m

an
ce

 (µ
s/

da
y/

no
de

)

nodes

NAMD/GPU - LUMI

Performance Energy

0

100

200

300

400

500

600

700

800

0

50

100

150

200

250

300

350

400

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
(k

J)

Pe
rf

or
m

an
ce

 (µ
s/

da
y/

no
de

)

nodes

NAMD/GPU - MeluXina

Performance Energy

0

1000

2000

3000

4000

5000

6000

7000

8000

0

500

1000

1500

2000

2500

3000

3500

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
(k

J)

Pe
rf

or
m

an
ce

 (µ
s/

da
y/

no
de

)

nodes

NAMD/GPU - Vega

Performance Energy

0
200

400

600

800

1000
1200

1400
1600

0

200

400

600

800

1000

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
(k

J)

Pe
rf

or
m

an
ce

 (µ
s/

da
y/

no
de

)

nodes

NAMD/GPU - Karolina

Performance Energy

0
200
400
600
800
1000
1200
1400
1600
1800

0
200
400
600
800

1000
1200
1400
1600
1800

2000

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
(k

J)

Pe
rf

or
m

an
ce

 (µ
s/

da
y/

no
de

)

nodes

NAMD/GPU - MN5

Performance Energy

0

200

400

600

800

1000

0

20

40

60

80

100

120

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
(k

J)

Pe
rf

or
m

an
ce

 (µ
s/

da
y/

no
de

)

nodes

NAMD/GPU - Leonardo

Performance Energy

0

200

400

600

800

1000

0

50

100

150

200

250

300

1 2 4

C
on

su
m

ed
 E

ne
rg

y
(k

J)

Pe
rf

or
m

an
ce

 (µ
s/

da
y/

no
de

)

nodes

NAMD/GPU - Deucalion

Performance Energy

 49

ARM
GROMACS

Figure 5-7: Graph for GROMACS ARM.

CP2K

Figure 5-8: Graph for CP2K ARM.

0

100

200

300

400

500

600

700

0,0
0,2
0,4
0,6
0,8
1,0
1,2
1,4
1,6
1,8

2,0

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
(k

J)

Pe
rf

or
m

an
ce

 (µ
s/

da
y/

no
de

)

nodes

GROMACS/ARM - Deucalion

Energy Energy

0
50
100
150
200
250
300
350
400

0

20

40

60

80

100

120

140

4 8 16

C
on

su
m

ed
 E

ne
rg

y
(k

J)

Pe
rf

or
m

an
ce

 (µ
s/

da
y/

no
de

)

nodes

CP2K/ARM - Deucalion

Performance Energy

 50

5.3. Energy usage

This plot shows the energy usage as reported by the different systems, expressed in
[kJ].

CPU
GROMACS

Figure 5-9: Energy usage graph for GROMACS CPU.

0,00

100,00

200,00

300,00

400,00

500,00

600,00

700,00

800,00

900,00

1000,00

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
[k

J]

nodes

Energy usage

LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion Discoverer

 51

CP2K

Figure 5-10: Energy usage graph for CP2K CPU.

NAMD

Figure 5-11: Energy usage graph for NAMD CPU.

0,00

100,00

200,00

300,00

400,00

500,00

600,00

700,00

800,00

900,00

1000,00

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
[k

J]

nodes

Energy usage

LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion Discoverer

0,00

500,00

1000,00

1500,00

2000,00

2500,00

3000,00

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
[k

J]

nodes

Energy usage

LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion Discoverer

 52

GPU
GROMACS

Figure 5-12: Energy usage graph for GROMACS GPU.

CP2K

Figure 5-13: Energy usage graph for CP2K GPU.

0,00

100,00

200,00

300,00

400,00

500,00

600,00

700,00

800,00

900,00

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
[k

J]

nodes

Energy usage

LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion JEDI

0,00

500,00

1000,00

1500,00

2000,00

2500,00

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
[k

J]

nodes

Energy usage

LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion

 53

NAMD

Figure 5-14: Energy usage graph for NAMD GPU.

5.4. Normalized energy usage per ns/day
and per 1/s

This plot shows the energy cost to perform a similar computation on a one node
equivalent for one computational cycle. It uses both the concept of normalized
performance of the performance-energy plot, and the total energy usage. The total
energy usage is divided by the normalized performance to obtain the quantity given
on this plot, expressed in [kJ/(ns/day/node)] or [kJ/(1/s/node)]. It shows an increase of
the energy cost by increasing number of nodes, and a general “measure” of the
efficiency of the machine. As this value is rescaled with the performance, it also
includes the relative speedup between the different machine, but also the relative
additional energy consumption for this speedup. This value should be low, as this
means a relative low energy usage and a relatively high (normalized) performance.
The main difference between this graph and the total energy difference, is that this
graph also includes the runtime of the calculation, where the energy usage just reports
the total energy consumed over the whole calculation.

0,00

500,00

1000,00

1500,00

2000,00

2500,00

3000,00

3500,00

4000,00

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y
[k

J]

nodes

Energy usage

LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion

 54

CPU
GROMACS

Figure 5-15: Normalized energy usage graph for GROMACS CPU.

CP2K

Figure 5-16: Normalized energy usage graph for CP2K CPU.

0

20

40

60

80

100

120

140

160

180

1 2 4 8 16

N
or

m
al

iz
ed

 E
ne

rg
y

U
sa

ge
 [k

J/
(n

s/
da

y/
no

de
)]

nodes

Normalized Energy usage per ns/day

LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion Discoverer

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1 2 4 8 16

N
or

m
al

iz
ed

 E
ne

rg
y

U
sa

ge
 [k

J/
(1

/s
/n

od
e)

]

nodes

Normalized Energy usage per 1/s

LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion Discoverer

 55

NAMD

Figure 5-17: Normalized energy usage graph for NAMD CPU.

GPU
GROMACS

Figure 5-18: Normalized energy usage graph for GROMACS GPU.

0

5

10

15

20

25

30

35

40

1 2 4 8 16

N
or

m
al

iz
ed

 E
ne

rg
y

U
sa

ge
 [k

J/
(n

s/
da

y/
no

de
)]

nodes

Normalized Energy usage per ns/day

LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion Discoverer

0

10

20

30

40

50

60

70

80

90

1 2 4 8 16

N
or

m
al

iz
ed

 E
ne

rg
y

U
sa

ge
 [k

J/
(n

s/
da

y/
no

de
)]

nodes

Normalized Energy usage per ns/day

LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion JEDI

 56

CP2K

Figure 5-19: Normalized energy usage graph for CP2K GPU.

NAMD

Figure 5-20: Normalized energy usage graph for NAMD GPU.

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

1 2 4 8 16

N
or

m
al

iz
ed

 E
ne

rg
y

U
sa

ge
 [k

J/
(1

/s
/n

od
e)

]

nodes

Normalized Energy usage per 1/s

LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion

0

5

10

15

20

25

30

35

40

1 2 4 8 16

N
or

m
al

iz
ed

 E
ne

rg
y

U
sa

ge
 [k

J/
(n

s/
da

y/
no

de
)]

nodes

Normalized Energy usage per ns/day

LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion

 57

5.5. Performance and energy heat maps

The heat maps below show the performance and the energy usage for the different
applications. The latter is also visible in graph format in Section 5.3. The heat map is
considered per number of nodes.

CPU - Performance
GROMACS

Performance (ns/day)

CP2K

TOTAL TIME MAXIMUM (s)

NAMD

Performance (ns/day)

LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion Discoverer
1 6,52 5,88 5,88 4,57 8,08 8,11 5,40 6,40
2 12,90 10,97 11,86 9,00 15,16 15,12 10,67 12,94
4 24,70 18,60 22,20 16,87 28,94 24,58 19,94 25,74
8 46,77 32,81 39,20 31,07 53,53 40,86 36,60 47,26
16 82,35 46,40 71,15 53,32 91,08 52,33 61,95 80,56

LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion Discoverer
1 446 445 535 518 307 401 408 425
2 244 273 303 304 172 258 241 258
4 145 160 188 180 97 174 150 152
8 89 104 120 137 59 118 100 101
16 68 85 87 76 34 120 83 70

LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion Discoverer
1 0,12 0,13 0,11 0,08 0,10 0,10 0,08 0,13
2 0,23 0,26 0,22 0,16 0,20 0,21 0,16 0,27
4 0,46 0,45 0,37 0,30 0,32 0,40 0,32 0,49
8 0,89 0,81 0,78 0,54 0,59 0,79 0,63 1,17
16 2,45 1,21 2,06 0,88 1,37 1,87 1,70 1,84

 58

CPU – Energy usage in [kJ]
GROMACS

CP2K

NAMD

The best performance for GROMACS CPU was obtained on MareNostrum 5 with a
total of 91,08 ns/day using 16 nodes. The lowest energy was consumed by MeluXina
using 4 nodes with 326,97 kJ, closely followed by Karolina and Leonardo using 1 node
with respectively 334,05 kJ and 339,05 kJ.

MareNostrum 5 completed the CP2K CPU benchmark in 34 seconds using 16 nodes.
The lowest energy was consumed by Deucalion using 1 node with 213,75 kJ, closely
followed by Karolina with 216,57 kJ using 1 node.

The best performance for NAMD CPU was obtained on LUMI with a total of 2,45
ns/day using 16 nodes. The lowest energy was consumed by LUMI as well using the
same 16 nodes with 978,26 kJ.

LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion Discoverer
1 360,16 394,38 766,96 334,05 398,12 339,05 357,69 371,30
2 372,47 372,89 758,62 333,90 437,86 395,10 368,07 372,64
4 391,61 326,97 657,33 352,31 487,24 447,42 401,19 383,56
8 414,44 387,20 657,51 379,58 570,45 563,39 456,98 440,65
16 491,29 463,77 403,18 433,31 863,00 932,68 568,48 544,05

LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion Discoverer
1 294,92 249,08 329,14 216,57 265,07 321,14 213,75 291,05
2 330,93 294,27 367,40 250,65 304,10 416,23 232,90 359,03
4 287,19 324,76 447,95 269,45 338,92 572,71 265,42 421,65
8 473,51 408,21 559,47 488,66 330,81 740,46 317,17 571,28
16 716,28 653,16 770,77 588,12 388,89 1492,97 493,50 794,34

LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion Discoverer
1 1187,32 1063,54 1180,70 1027,15 1829,13 1541,03 1413,09 1161,45
2 1296,20 1106,89 1223,24 1060,93 1870,39 1530,21 1446,58 1226,76
4 1264,26 1207,69 1409,53 1102,18 2241,73 1655,20 1454,59 1436,22
8 1301,04 1145,11 1530,47 1223,17 2564,66 1840,27 1524,36 1457,86
16 978,26 1373,35 1339,35 1440,17 2333,07 1929,51 1173,66 2078,29

 59

GPU - Performance
GROMACS

Performance (ns/day)

CP2K

TOTAL TIME MAXIMUM (s)

NAMD

Performance (ns/day)

LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion
1 283 218 110 206 153 359 259
2 208 165 241 120 107 260 191
4 111 103 146 91 68 114 133
8 87 101 251 63 50 95
16 56 85 151 66 38 58

 60

GPU - Energy usage in [kJ]
GROMACS

CP2K

NAMD

The best performance for GROMACS GPU was obtained on Karolina with a total of
177,66 ns/day using 16 nodes. The lowest energy was consumed by Vega using one
node with 135,42 kJ.

MareNostrum 5 completed the CP2K GPU benchmark in 38 seconds using 16 nodes.
The lowest energy was consumed by Vega using one node with 217,76 kJ.

The best performance for NAMD GPU was obtained on MareNostrum 5 with a total of
6,56 ns/day using 16 nodes, closely followed by LUMI with a total of 6,46 ns/day using
16 nodes. The lowest energy was consumed by LUMI using two nodes with 383,83
kJ.

Remark: the measurements on MeluXina on two nodes (in italics) will be double
checked.

LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion JEDI
1 180,83 199,75 135,42 231,48 151,94 190,80 232,79 159,00
2 249,57 128,57 146,46 271,86 212,24 191,17 353,70 240,00
4 258,09 338,03 170,06 335,65 499,10 237,95 437,97 354,00
8 395,12 318,44 678,87 408,16 439,82 254,21 489,00
16 630,01 388,67 736,15 612,11 800,31 333,94 1154,00

LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion
1 253,35 240,58 217,76 381,05 252,54 252,71 324,28
2 355,49 160,76 271,94 419,43 308,31 332,41 468,38
4 397,70 426,69 292,82 723,56 407,75 309,14 668,31
8 620,25 745,29 936,23 990,64 1612,20 469,34
16 796,12 1087,89 1251,58 2104,44 1765,96 578,52

LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion
1 539,28 567,27 512,24 816,90 574,61 824,83
2 383,83 220,58 1103,47 871,85 805,60 994,75 938,86
4 454,08 638,07 2089,62 1090,58 1195,85 1058,25 1063,01
8 441,45 798,74 4247,02 1233,31 1183,12 1080,64
16 454,64 855,90 8446,52 1793,60 1925,27 1144,74

 61

6. Conclusion

Chapter 2 describes the benchmarks being used to give an overview of energy
measurements on the different machines. Chapter 3 presents the available EuroHPC
machines, including specifications, measurement tools and other available libraries.
Chapter 4 discusses tools which provide extra information outside of the default data
gathered by Slurm, useful for collecting and/or influencing energy usage, together with
an overview of dashboards available on some sites. Chapter 5 contains the results of
running the benchmarks using GROMACS, CP2K and NAMD, on CPU and GPU,
providing both performance and energy usage data.

It might be tempting to pick to the most “green-ish” machine from the heat maps for
your next computations. However, we suggest to not blindly follow the tables and take
the following remarks into account:

• Different versions of the same program might have been used, or the same
version with different compilation options.

• The placement of the jobs by the scheduler might be different.
• The pinning might be different.
• Energy measurements might be different: output directly from sensors, or via

specific libraries; sampling rate; …
• Even if the hardware is very similar (MeluXina, Vega and Discoverer), results

might be different.
• The number of CPU cores or GPUs might be different.
• Make sure to use full nodes (“exclusive”) when comparing machines.

