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Executive Summary 
 
This document provides practical guidance for users of EPICURE on accessing and 
interpreting power consumption data from various EuroHPC supercomputing systems. It 
outlines the different approaches each system uses to collect, aggregate, and expose energy 
and power measurements, and offers concrete examples and job script templates to help 
users monitor and analyse the energy footprint of their applications. 
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1. Introduction 
 
This Best Practice Guide on Power Consumption Measurements in EuroHPC Systems 
provides an overview of how users can access and interpret power consumption data 
across all currently active EuroHPC supercomputers. It describes the tools and 
methods available to monitor and analyse energy usage during computation on these 
systems. 
 
To support practical application, the guide also includes example job scripts and 
benchmark outputs collected from multiple EuroHPC machines. These resources are 
shared on EPICURE’s shortbench GitLab repository (EPICURE’s shortbench GitLab), 
enabling users to integrate power monitoring into their workflows more effectively. 
 

  

https://opencode.it4i.eu/epicure/shortbench
https://opencode.it4i.eu/epicure/shortbench
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2. Overview of the benchmarks 
 
The benchmarks selected for this study are well-known within the HPC community and 
are typically available on all EuroHPC clusters. Each of these applications offers 
options to run on both CPUs and GPUs, allowing us to compare their performance 
and power consumption across different hardware configurations. 
 
These applications are also widely used across HPC facilities, making the results 
particularly relevant for users deciding which machine best suits their workloads, or 
those seeking practical examples of job scripts and input configurations. 
 

2.1. CPU 
CP2K 
 
About the code 
CP2K is an open-source quantum chemistry and solid-state physics software 
package. It is known for its efficiency and scalability on large parallel systems. CP2K 
provides a general framework for different modelling methods such as DFT which is 
the one used in our benchmark input. 
 
About the benchmark 
H2O-DFT-LS is one of CP2K’s default benchmarks included in its installation package. 
It performs large-scale DFT calculations on water molecules and is commonly used to 
evaluate the scalability and parallel performance of DFT-based simulations on different 
computing architectures. 
 
GROMACS 
 
About the code 
GROMACS is an open-source, high-performance molecular dynamics (MD) package 
widely used in the life science community It is primarily designed for biochemical 
molecules like proteins, lipids and nucleic acids, but can be used also for non-
biological system like in materials science. 
 
About the benchmark 
lignocellulose-rf is part of the PRACE Unified European Applications Benchmark Suite 
(UEABS). It simulates a complex lignocellulosic biomass system using reaction-field 
for electrostatics, making it relevant for large-scale simulations and scalability 
benchmarking. 
 
NAMD 
 
About the code 
NAMD is a computer software optimized for high-performance molecular dynamics 
simulations. It is noted for its parallel efficiency and is often used to simulate large 
systems (millions of atoms). 

https://www.cp2k.org/performance
https://repository.prace-ri.eu/git/UEABS/ueabs/-/tree/master/gromacs
https://www.cp2k.org/performance
https://repository.prace-ri.eu/git/UEABS/ueabs/-/tree/master/gromacs
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About the benchmarks 
20stmv2fs.namd (memory-optimized) and 20stmv2fs-nonopt.namd (non–memory-
optimized) are official benchmarks included with NAMD source code. Both are 
designed to test performance on large biomolecular systems like the Satellite Tobacco 
Mosaic Virus (STMV). 
 

2.2. GPU 
 
The same benchmarks were also executed on GPU-accelerated hardware, using the 
same input configurations as on the CPU. This approach enables a direct comparison 
of performance and scalability between CPU-only and GPU-accelerated runs. 
 
By comparing CPU and GPU results on identical benchmarks, we can better evaluate 
how effectively each code takes advantage of GPU acceleration, as well as quantify 
improvements in both performance and power efficiency when running on GPU-
enabled EuroHPC infrastructures. On systems like MareNostrum5, Leonardo, and 
LUMI, where both CPU and GPU partitions are part of the same machine and share 
uniform power measurement tools, the comparison becomes especially valuable and 
reliable. 

  

https://www.ks.uiuc.edu/Research/namd/benchmarks/
https://www.ks.uiuc.edu/Research/namd/benchmarks/
https://www.ks.uiuc.edu/Research/namd/benchmarks/
https://www.ks.uiuc.edu/Research/namd/benchmarks/


 

 9 

3. EuroHPC systems 
 
As part of the EPICURE project, we have access to all currently active EuroHPC 
supercomputing systems across participating sites. This unique collaboration enables 
us to run benchmarks and collect power consumption data directly on each of these 
systems, ensuring that the information and examples provided in this guide reflect real, 
up-to-date usage across the entire EuroHPC landscape. 
 
In this section, we present an overview of each EuroHPC system included in our study. 
For each machine, we describe its architecture, available accelerators (CPU/GPU), 
and the tools or interfaces it provides for monitoring power and energy usage. This 
context will help users understand the capabilities and differences between systems, 
and how to apply the practical examples shared in this guide to their own jobs. 
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3.1. LUMI 
 
LUMI is a pre-exascale EuroHPC supercomputer, supplied by HPE and in production 
since 2022. It is hosted by CSC in its Kajaani data centre in Finland. 
 
Specifications 
 
GPU partition (LUMI-G) 

• 2928 GPU nodes, 4 AMD MI250 GPUs (128 GiB GPU memory) and 1 AMD 
Trento host-CPU (512 GiB host memory). 

CPU partition (LUMI-C) 
• 1888 CPU nodes, 2 x 64-core 2.45 GHz AMD Milan, 256 GiB RAM 
• 128 CPU nodes, 2 x 64-core 2.45 GHz AMD Milan, 512 GiB RAM 
• 32 CPU nodes, 2 x 64-core 2.45 GHz AMD Milan, 1 TiB RAM 

Interactive data-analytics partition (LUMI-D) 
• 8 big-memory nodes, 2 x 64-core 2.25 GHz AMD Rome, 4 TiB RAM 
• 8 visualization nodes, 8 NVIDIA A40 GPUs (48 GiB GPU memory) and 2 x 64-

core 2.25 GHz AMD Milan (2 TiB host memory) 
 
Measurements 
 
Energy is measured on node level and job consumed energy is reported through Slurm 
energy accounting. 
Data from pm_counters on node level is available to admins. 
 
Additional info 
 
Slurm info: 23.02.7; acct_gather_energy/pm_counters  
Extra tools:  
Benchmarking environment: Manual executions 
Performance analysis: CrayPat, rocprof. Other (Score-P, Scalasca) may be installed 
using EasyBuild recipes found in the LUMI Software Library but are not officially 
supported. 
 
https://www.lumi-supercomputer.eu 
https://docs.lumi-supercomputer.eu 
https://docs.lumi-supercomputer.eu/runjobs/scheduled-jobs/jobenergy/ 
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/  

https://www.lumi-supercomputer.eu/
https://docs.lumi-supercomputer.eu/
https://docs.lumi-supercomputer.eu/runjobs/scheduled-jobs/jobenergy/
https://docs.lumi-supercomputer.eu/runjobs/scheduled-jobs/jobenergy/
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/
https://www.lumi-supercomputer.eu/
https://docs.lumi-supercomputer.eu/
https://docs.lumi-supercomputer.eu/runjobs/scheduled-jobs/jobenergy/
https://docs.lumi-supercomputer.eu/runjobs/scheduled-jobs/jobenergy/
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/
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3.2. Leonardo 
 
Leonardo is a next-generation pre-exascale Tier-0 supercomputer, part of the 
EuroHPC Joint Undertaking, in production since August 2023. It is hosted by CINECA 
at the Bologna Technopole in Italy and it is developed and supplied by EVIDEN ATOS. 
 
Specifications 
 
Leonardo is structured into two main compute partitions, both connected via 
DragonFly+ (NVIDIA Mellanox Infiniband HDR) 200 Gbps and managed using Slurm 
workload manager. 
 
Booster Partition 

• 3456 heterogenous nodes with 32 cores/node and 4 GPUs/ node 
• Based on single socket Intel Ice Lake CPU (Intel Xeon Platinum 8358, 2.60 

GHz, TDP 250 W) 
• Equipped with NVIDIA Ampere GPUs, 64 GB HBM2e NVLink 3.0 (200 GB/s)  
• 2 x dual port HDR100 per node 

Data Centric General Purpose (DCGP) Partition 
• 1536 nodes with 112 cores/node 
• Based on dual socket 56 cores Intel Sapphire Rapids CPU (2 x Intel Xeon 

Platinum 8480p, 2.00 GHz, TDP 350 W) 
• Single port HDR100 per node 

 
Measurements 
 

• Energy can be measured at the node and job level by installing COUNTDOWN 
(https://github.com/EEESlab/countdown), for the Booster partition only.  

• GPU energy on Booster can be measured by users via nvidia-smi and NVML. 
• CPU energy can be retrieved by reading RAPL sampling data on Booster and 

DCGP. 
• The CINEMON tool (https://gitlab.hpc.cineca.it/amonteru/cinemon-public.git), 

developed by CINECA staff and based on RAPL and NVML power 
measurements, can be installed on Leonardo cluster to measure the overall 
CPU, RAM, GPU, NODE and JOB energy consumed. Time series are currently 
available, environment variables can be used to adapt the sampling period of 
RAPL and NVML. More information regarding its deployment and measurement 
configurations can be found on the project README.md. 

 
Additional info 
 
Slurm info: 22.05.10 
Extra tools: COUNTDOWN, Intel RAPL and NVIDIA NVML, NVIDIA-SMI, CINEMON 
Benchmarking environment: JUBE 
Performance analysis: SCORE-P, NSYS, NCU 
 
https://leonardo-supercomputer.cineca.eu 

https://leonardo-supercomputer.cineca.eu/
https://leonardo-supercomputer.cineca.eu/
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https://leonardo-supercomputer.cineca.eu/hpc-system/#jump-efficiency 
https://docs.hpc.cineca.it/index.html  

https://leonardo-supercomputer.cineca.eu/hpc-system/
https://docs.hpc.cineca.it/index.html
https://leonardo-supercomputer.cineca.eu/hpc-system/
https://docs.hpc.cineca.it/index.html
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3.3. MareNostrum 5 
 
MareNostrum 5 is a pre-exascale EuroHPC supercomputer supplied by Bull SAS that 
combines Lenovo ThinkSystem SD650 V3 and Eviden BullSequana XH3000 
architectures, providing two partitions with different technical characteristics. 
 
Specifications 
 
MareNostrum 5 GPP (General Purpose Partition) 
The MareNostrum 5 GPP, a general-purpose system, houses 6,408 nodes based on 
Intel Sapphire Rapids (4th Generation Intel Xeon Scalable Processors), along with an 
additional 72 nodes featuring Intel Sapphire Rapids HBM (High Bandwidth Memory). 
This configuration results in a total count of 726,880 processor cores and 1.75PB of 
main memory. The different configuration of nodes within this partition is present 
below: 
 

• 6192 nodes, 2 x Intel Xeon Platinum 8480+ 56 cores, 2 GHz, 256 GiB 
• 216 Highmem nodes, 2 x Intel Xeon Platinum 8480+ 56 cores, 2 GHz, 1024 

GiB 
• 72 HBM nodes, 2 x Intel Xeon Platinum 8480+ 56 cores, 2 GHz, 128 GiB 
• 10 Data nodes, 2 x Intel Xeon Platinum 8480+ 56 cores, 2 GHz, 2048 GiB 
 

MareNostrum 5 ACC (Accelerated Partition) 
The MareNostrum 5 ACC accelerated system comprises 1,120 nodes based on Intel 
Xeon Sapphire Rapids processors and NVIDIA Hopper GPUs, offering a total (CPUs 
+ GPUs) of 680,960 compute units. The nodes are configured with the following 
components: 
 

• 1120 nodes, 2x Intel Xeon Platinum 8460Y+ 40cores, 2.3 GHz, 512 GB, 4x 
NVIDIA Hopper H100 64GB HBM2 

 
Measurements 
 

• Energy usage is reported through Slurm energy accounting and the Energy 
Aware Runtime (EAR) tool. 

• On the GPP partition, energy consumption is monitored using both EAR and 
Slurm energy accounting. 

• On the ACC partition, energy consumption is monitored using EAR only. 
 
Additional info 
 
Slurm info: 23.02.7 
Extra tools: EAR 
Benchmarking environment: JUBE 
Performance analysis: TALP, Extrae and Paraver 
 
https://www.bsc.es/supportkc/docs/MareNostrum5/intro/ 

https://www.bsc.es/supportkc/docs/MareNostrum5/intro/
https://www.bsc.es/supportkc/docs/MareNostrum5/intro/
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https://www.bsc.es/supportkc/docs/MareNostrum5/slurm  

https://www.bsc.es/supportkc/docs/MareNostrum5/slurm
https://www.bsc.es/supportkc/docs/MareNostrum5/slurm
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3.4. MeluXina 
 
The system is in production since November 2021. The supercomputer is based on 
Atos Sequana XH2000, with 813 compute nodes, which are interconnected with 
InfiniBand (Dragonfly+ topology). 
 
Specifications 
 
CPU partition 

• 573 CPU nodes, 2x AMD Rome 7H12 (64c, 2.6 GHz, 280W), 512GiB RAM 
GPU partition: 

• 200 GPU nodes 4x Nvidia A100 40 GiB HBM2, 2x AMD Rome 7452 (32c, 2.3 
GHz, 155W), 512 GiB RAM 

Large memory partition 
• 20 fat nodes, 2x AMD Rome 7H12 (64c, 2.6 GHz, 280W), 4 TiB RAM 

FPGA partition 
• 20 FPGA nodes, 2x BittWare 520N-MX 16 GiB HBM2 (Intel Stratix 10MX chip), 

2x AMD Rome 7452 (32c, 2.3 GHz, 155W), 512 GiB RAM 
 
Measurements 
 

• Energy is measured on node level and job consumed energy is reported 
through Slurm energy accounting.  

• Data from IPMI sensors on node level is available to admins. 
• For FPGA cards, we use the bittware “minitor” executable which is only 

available to admins. 
 
Additional info 
 
Slurm info: 23.11.9; acct_gather_energy/ipmi 
Extra tools:  
Benchmarking environment: Reframe 
Performance analysis: Score-P, perf, Intel VTune, NVIDIA Nsight Systems 
 
https://docs.lxp.lu 
https://docs.lxp.lu/first-steps/handling_jobs/#energy-monitoring  

https://docs.lxp.lu/
https://docs.lxp.lu/first-steps/handling_jobs/#energy-monitoring
https://docs.lxp.lu/
https://docs.lxp.lu/first-steps/handling_jobs/#energy-monitoring
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3.5. Karolina 
 
Karolina is HPE Apollo (Apollo 200 and Apollo 6500) system with fully non-blocking 
fat-tree InfiniBand interconnect. The system is in operation from Q2 of 2021. The 
Karolina cluster consists of several partitions which together gives over 15.7 PFLOP/s 
theoretical peak performance. 
 
Specifications 
 
CPU partition 

• 720 nodes, 2 x AMD Zen 2 EPYC 7H12 (280W TDP), 256 GB DDR4 
GPU partition 

• 72 nodes, 8 x NVIDIA A100 (40 GB HBM2) (400 W TDP), 2 x AMD Zen 3 EPYC 
7763 (280 W TDP), 1024 GB DDR4 

 
Measurements 
 
In the Karolina system, MERIC energy efficient HPC software suite is deployed. 
Using its Job budgeting service every user may read energy consumption of jobs 
executed under the project the user participates in. Administrators can access all jobs. 
It is also possible to extract energy consumption of a project, a cluster, a user, or 
specific time period. In login nodes, a command line utility get_energy is available for 
users.  
 
The MERIC Job budgeting service on Karolina provides job energy consumption at 
several levels: 

• CPU energy consumption – In band (performance counters). 
• GPU energy consumption – In band (performance counters), if GPUs 

available. 
• Node energy consumption – Combination of CPU and GPU energy 

consumption (high frequency power sampling, typically 1kHz) and Out-of-Band 
power monitoring of the node (low frequency, typically 0.017 up to 1 Hz). 

• Overall energy consumption – Node energy consumption multiplied by 
system Power Usage Effectiveness (PUE) at the moment of the job execution.  

• CO2e – Overall energy consumption multiplied by carbon intensity 
(gCO2eq/kWh) at the moment of the job execution. The source of the carbon 
intensity can be site-specific, or universal solution reading the data from 
https://app.electricitymaps.com/, which provides the carbon intensity per region 
(in Europe typically per country). 

 
Besides the command line utility which prints the CO2e and energy consumption at all 
the levels, the Job budgeting service also provides web interface which in addition 
presents power consumption timeline (power consumption of each CPU, each GPU, 
each node) during the job. The timeline granularity is 0.017 Hz (one sample per 
minute) presenting average power consumption during the past minute. 
 

https://app.electricitymaps.com/
https://app.electricitymaps.com/
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For users, MERIC runtime system (used as a user-tool instead of runtime system) is 
available as a software module to measure energy consumption per application 
execution using command line utility, or energy consumption and energy-efficiency 
metrics per application region if linked with the library and application's regions of 
interest instrumented. See section 4.3 for more details. 
 
Administrators have additional power monitoring dashboards presenting power and 
temperature level per node and chassis in a rack, per rack, cluster and other 
infrastructure levels according to site-specific availability. 
 
Energy efficiency optimization 
 
From February 2023 the Karolina cluster is operated in the static energy efficient 
mode, which reduces CPU core frequency limit of CPU partition from 3.3 GHz to 2.1 
GHz, and GPU SMs frequency limit of GPU partition from 1.41 GHz to 1.29 GHz. 
 
Additionally, a group of users (extended on request) may access CPU and GPU power 
management knobs to optimize energy efficiency of the executed workload. MERIC 
runtime system is available as a software module to expose these knobs, and provide 
static and automatic dynamic tuning to improve executed application energy efficiency. 
See section 4.3 for more details. 
 
Additional info 
 
Slurm info: 23.11.10 
Extra tools: MERIC 
Benchmarking environment: Gitlab runners with Jacamar CI driver available in 
IT4Innovations' GitLab (available to all system users) which allows to execute 
continuous integration and continuous benchmarking jobs in compute nodes. 
Performance analysis: POP CoE tools (Score-P, Scalasca, Extrae, MAQAO, DLB, 
MERIC, MUST, CARM), NVIDIA Nsight Systems, Linaro's software tools, Intel Advisor, 
Intel VTune, AMD μProf 
 
https://docs.it4i.cz/karolina/introduction/ 
https://docs.it4i.cz/general/energy/?h=energy 
https://code.it4i.cz/energy-efficiency/meric-suite  
https://pop-coe.eu/  

https://docs.it4i.cz/karolina/introduction/
https://docs.it4i.cz/general/energy/?h=energy
https://code.it4i.cz/energy-efficiency/meric-suite
https://pop-coe.eu/
https://docs.it4i.cz/karolina/introduction/
https://docs.it4i.cz/general/energy/?h=energy
https://code.it4i.cz/energy-efficiency/meric-suite
https://pop-coe.eu/
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3.6. Discoverer 
 
The system is in production since September 2021. The supercomputer is based on 
Atos Sequana XH2000, with 1128 compute nodes, which are interconnected with 
InfiniBand (Dragonfly+ topology). 
 
 
Specifications 
 
CPU partition 

• 1110 CPU nodes, 2x AMD Rome 7H12 (64c, 2.6 GHz, 280 W), 256 GiB RAM 
Large memory partition:  

o 18 fat nodes, 2x AMD Rome 7H12 (64c, 2.6 GHz, 280 W), 1 TiB RAM 
Discoverer+ GPU partition 

• 32 (4 × 8) NVIDIA H200 GPU accelerators, 448 (112 × 4) hardware CPU cores, 
7.84 (1.96 × 4) TiB RAM 

 
Measurements 
 
Energy is measured on node level and job consumed energy is reported through 
custom web based interface. 
Data from IPMI sensors on node level is available to admins. 
 
Additional info 
 
Slurm info: 20.02.6-Bull.1.1 
Extra tools:  
Benchmarking environment: Manual executions 
Performance analysis: Intel Vtune, NVIDIA Nsight, perf, AMD μProf, Score-P, TAU, 
HPCToolkit. 
 
https://docs.discoverer.bg/index.html  

https://docs.discoverer.bg/index.html
https://docs.discoverer.bg/index.html
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3.7. Vega 
 
The system is in production since April 2021. The supercomputer is based on Atos 
Sequana XH2000, with 1020 compute nodes, which are interconnected with InfiniBand 
(Dragonfly+ topology). 
 
Specifications 
 
CPU partition 

• 768 CPU nodes, 2 x AMD Rome 7H12 (64c, 2.6 GHz, 280 W), 256 GiB RAM 
• 192 CPU nodes, 2 x AMD Rome 7H12 (64c, 2.6 GHz, 280 W), 1 TiB RAM  

GPU partition 
• 60 GPU nodes 4 x Nvidia A100, 2 x AMD Rome 7H12, 512 GiB RAM 

 
Measurements 
 
Energy is measured on node level and job consumed energy is reported through Slurm 
energy accounting (IPMI).  
Data from IPMI sensors on node level is available to admins. Kernel module for RAPL 
is loaded but not readable for users. 
 
Additional info 
 
Slurm info: 24.11.4; acct_gather_energy/ipmi 
Extra tools: NVML 
Benchmarking environment: Manual Execution. 
Performance analysis: LIKWID, TotalView, Score-P, perf, Intel VTune, PAPI, nways, ... 
 
https://www.izum.si/en/hpc-en/ 
https://doc.vega.izum.si/energy-usage/  

https://www.izum.si/en/hpc-en/
https://doc.vega.izum.si/energy-usage/
https://www.izum.si/en/hpc-en/
https://doc.vega.izum.si/energy-usage/
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3.8. Deucalion 
 
Deucalion is a peta-scale EuroHPC supercomputer, supplied by Fujitsu (currently Fsas 
Technologies) and in production since June 2024. It is hosted by FCT at Universidade 
do Minho in Guimarães, Portugal. 
Deucalion has 3 partitions: one partition based on the Fujitsu ARM A64FX processors, 
one based on AMD Epyc 7742 processors (2 sockets per node) and an accelerated 
partition based on AMD Epyc 7742 accelerated with Nvidia A100 GPUs (4 per node, 
including both A100 with 40 and 80 GB of VRAM). 
The ARM partition is interconnected with Infiniband HDR Fat-Tree with 1:1.6 blocking 
factor and the AMD and GPUs partitions are interconnected with Infiniband HDR Fat-
Tree with 1:1 non-blocking. 
 
Specifications 
 
CPU (A64FX) partition 

• 1632 ARM FX700 nodes, Fujitsu’s A64FX (48c, 2.0 GHz), 32 GiB RAM 
CPU (x86) partition 

• 500 nodes, 2x AMD Epyc 7742 (64c, 2.25 GHz), 256 GiB RAM 
GPU partition 

• 17 nodes, 4 x Nvidia A100 GPUs (40 GiB GPU memory), 2 x AMD Epyc 7742 
(64c, 2.25 GHz), 512 GiB RAM 

• 16 nodes, 4 x Nvidia A100 GPUs (80 GiB GPU memory), 2 x AMD Epyc 7742 
(64c, 2.25 GHz), 512 GiB RAM 

 
Measurements 
 
Deucalion uses the MERIC energy-efficient HPC software suite, the same as Karolina 
(See section 3.5). 
 
Additional info 
 
Slurm info: 23.11.8 
Extra tools: MERIC 
Benchmarking environment: Manual Execution. 
Performance analysis: POP CoE tools (Score-P, Scalasca, MAQAO, DLB, MERIC), 
Intel Vtune 
 
https://docs.deucalion.macc.fccn.pt  

https://docs.deucalion.macc.fccn.pt/
https://docs.deucalion.macc.fccn.pt/
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3.9. JUPITER 
 
JUPITER, the “Joint Undertaking Pioneer for Innovative and Transformative Exascale 
Research", will be the first exascale supercomputer in Europe. The system is provided 
by a ParTec-Eviden supercomputer consortium and was procured by EuroHPC JU in 
cooperation with the Jülich Supercomputing Centre (JSC). It is installed in the 
Forschungszentrum Jülich campus in Germany. 
 
Specifications 
 
JUPITER Booster consists of ~6000 standard compute nodes 

• 4 × NVIDIA GH200 Grace-Hopper Superchip (see Figure Fout! 
Verwijzingsbron niet gevonden.) 

o CPU: NVIDIA Grace (Arm Neoverse-V2), 72 cores at 3.1 GHz base 
frequency; 120 GB LPDDR5X memory at 512 GB/s (8532 MHz) 

o GPU: NVIDIA Hopper H100, 132 multiprocessors, 96 GB HBM3 
memory at 4 TB/s 

o NVIDIA NVLink-C2C CPU-to-GPU link at 900 GB/s 
o TDP: 680 W (for full GH200 superchip) 

• NVLink 4 GPU-to-GPU link, 300 GB/s between pairs of GPUs (150 GB/s per 
direction) 

• Network: 4 × InfiniBand NDR200 (Connect-X7) 
 

 
Measurements 
 
LLview (see section 4.6) can report power metrics (in Watts) at several levels, i.e. 
node power, CPU/GPU power, superchip power. 
 
Additional info 
 
Slurm info: 
Extra tools: LLview 
Benchmarking environment: JUBE 
Performance analysis: Score-P, Scalasca, CUBE, Vampir 

Figure 3-1: Node diagram of the 4× NVIDIA GH200 node design of JUPITER Booster. 
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https://jupiter.fz-juelich.de/ 
https://llview.fz-juelich.de/  

https://jupiter.fz-juelich.de/
https://llview.fz-juelich.de/
https://jupiter.fz-juelich.de/
https://llview.fz-juelich.de/
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4. Tools 
 

4.1. Slurm 
 
SLURM is an open-source, fault-tolerant, and highly scalable workload manager 
designed for both large and small Linux clusters. 
 
For power management, SLURM offers plugins that collect energy consumption data 
on a per-job basis. These plugins can use various hardware interfaces, such as IPMI, 
RAPL counters, or external scripts, depending on what is available on the system. The 
collected data is stored alongside each job and can be retrieved later using the sacct 
command, as described below. 
 
More details about SLURM’s power measurement options can be found in the SLURM 
documentation on AcctGatherEnergyType. 
 
In the benchmarks presented in this document, when power data was obtained 
through SLURM, we used the following command to report the job type and the 
corresponding energy consumption: 
 
sacct -j jobid.0 -o 
nnodes,ntasks,ncpus,consumedenergy,consumedenergyraw,elapsed,elapsedraw 

 

4.2. EAR 
EAR software is a management framework optimizing the energy and efficiency of a 
cluster of interconnected nodes. To improve the energy of the cluster, EAR provides 
energy control, accounting, monitoring and optimization of both the applications 
running on the cluster and of the overall global cluster. 
 
At EAR’s core is a monitoring tool which gathers data on the nodes and on the 
applications running on the cluster. Therefore, on top of optimizing the energy 
consumed by the applications running on the cluster and the overall global cluster, 
EAR reports system and application information. 
 
EAR components are the EAR library (EARL), EAR DB manager (EARDBD), EAR 
Daemon (EARD), EAR Slurm plugin (EARplug) and EAR Global Manager (EARGM). 
EAR offers a highly configurable and extensible infrastructure for energy management. 
Last version of EAR includes a plugin mechanism to dynamically load power policies, 
power and time models, energy readings and application traces generation. To offer a 
simple install&test approach, EAR includes default powerful plugins for all these 
features. Slurm is the batch scheduler full compatible with EAR thanks to EAR's Slurm 
SPANK plug-in. With EAR's Slurm plug-in, running an application with EAR is as easy 
as submitting a job with either srun, sbatch or mpirun. The EAR Library (EARL) is 
automatically loaded with some applications when EAR is enabled by default. 
 
  

https://slurm.schedmd.com/slurm.conf.html#OPT_AcctGatherEnergyType
https://slurm.schedmd.com/slurm.conf.html#OPT_AcctGatherEnergyType
https://slurm.schedmd.com/slurm.conf.html#OPT_AcctGatherEnergyType
https://slurm.schedmd.com/slurm.conf.html#OPT_AcctGatherEnergyType
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EAR Features 
 
The following list highlights the main functionalities and features provided by EAR. 
While the accompanying examples are demonstrated on the Marenostrum 5 
supercomputer, these capabilities are designed to be available in any standard 
installation of EAR. 
 
EAR job Accounting (eacct) 
The eacct command shows accounting information stored in the EAR DB for jobs (and 
steps) IDs. The command uses EAR's configuration file to determine if the user 
running it is privileged or not, as non-privileged users can only access their 
information. It provides the following options. 
 
Usage examples 
The basic usage of eacct retrieves the last 20 applications (by default) of the user 
executing it. If a user is privileged, they may see all users’ applications. The default 
behaviour shows data from each job-step, aggregating the values from each node in 
said job-step. If using Slurm as a job manager, a sb (sbatch) job-step is created with 
the data from the entire execution. A specific job may be specified with -j option. 

 

 
For node-specific information, the -l (i.e., long) option provides detailed accounting of 
each individual node. If EARL was loaded during an application execution, runtime 
data (i.e., EAR loops) may be retrieved by using -r flag. An example of both their usage 
is shown below. 
 
 
 
 
 
 
 
 
 
 
 

 
 
To easily transfer the output from eacct, you can use the -c option to save the 
requested data in CSV format. This can be done as follows: 
 

Figure 4-1: Output obtained using the eacct command for a specific job. 

Figure 4-2: eacct showing detailed accounting of each node. 

https://oos.eduuni.fi/ear_team/ear/-/wikis/EAR-commands
https://oos.eduuni.fi/ear_team/ear/-/wikis/EAR-commands
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[user@host EAR]$ eacct -j 21382481-c test.csv  
Figure 4-3: Saving the output of eacct to test.csv. 

If successful, you'll see a message like: 
 
Successfully written applications to csv. Only applications with EARL will have its information 
properly written. 

 
Example: Using EAR with Slurm+srun on MareNostrum5 
When submi+ng jobs with sbatch, EAR op8ons can be specified using the ear module, 
available in both par88ons. For example: 
 

#SBATCH --ear=on                           # Enable Energy-Aware Run8me (EAR) monitoring 
#SBATCH --ear-verbose=1              # Enable verbose EAR output 
 
module load ear                              # load the ear module 
mkdir -p ear_metrics                      # create directory to store EAR results 
 
srun --ear-user-db=ear_metrics/app_metrics gmx_mpi mdrun -s lignocellulose-rf.tpr -pin on -
noconfout -nsteps 20000 -nstlist 200 

Figure 4-4: Example job script using EAR on MareNostrum 5 

EAR policies 
EAR offers three energy policies plugins: min_energy, min_+me and monitoring. The last one 
is not a power policy, is used just for applica8on monitoring where CPU frequency is not 
modified (neither memory nor GPU frequency). The energy policy is selected by se+ng the --
ear-policy=policy op8on when submi+ng a Slurm job. A policy parameter, which is a 
par8cular value or threshold depending on the policy, can be set using the flag --ear-policy-
th=value. 
 
min_energy 
The goal of this policy is to minimise the energy consumed with a limit to the 
performance degradation. This limit is set in the Slurm --ear-policy-th option or the 
configuration file. 
 
srun --ear-policy=min_energy --ear-user-db=more_test_min_energy/app_metrics gmx_mpi 
mdrun -s lignocellulose-rf.tpr -pin on -noconfout -nsteps 20000 -nstlist 200 

Figure 4-5: Selecting min_energy in a Slurm job. 

min_>me  
The goal of this policy is to improve the execution time while guaranteeing a minimum 
ratio between performance benefit and frequency increment that justifies the increased 
energy consumption from this frequency increment. 
 
For instance, if --ear-policy-th=0.70, EAR will prevent scaling to upper frequencies if 
the ratio between performance gain and frequency gain do not improve at least 70% 
(PerfGain >= (FreqGain * threshold).  
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Figure 4-6: Example job script using EAR on MareNostrum 5 

 
srun --ear-policy=min_8me --ear-policy-th=0.70 --ear-user-
db=more_test_min_8me/app_metrics gmx_mpi mdrun -s lignocellulose-rf.tpr -pin on -
noconfout -nsteps 20000 -nstlist 200 

Figure 4-7: Selecting min_time policy in a Slurm job. 

 
CPU Frequency selection in EAR 
Within EAR, you can manually select a CPU frequency in combination with a specific 
optimization policy. 

• Use the --ear-policy=policy_name flag to select the desired policy. 
• Use the --ear-cpufreq=value flag to specify the desired CPU frequency. 

 The value must be provided in kHz (e.g., 2000000 for 2.0 GHz). 
 
We evaluated the performance and energy consumption of GROMACS on two nodes 
using different EAR policy and threshold values. 

• Without EAR, the performance was 55.856 ns/day. 
Min-Time Policy: 

• With the default threshold value (--ear-policy-th=0.65), performance was 
53.363 ns/day. 

• Using --ear-policy-th=0.70, performance slightly decreased to 53.215 ns/day. 
Min-Energy Policy: 

• With the default threshold (--ear-policy-th=0.05), performance increased to 
56.635 ns/day. 

• Using a higher threshold (--ear-policy-th=0.10), performance was 55.084 
ns/day. 

Monitoring Policy (CPU Frequency Scaling): 
• At 2.0 GHz, performance was 55.722 ns/day. 
• At 1.9 GHz, performance was 56.216 ns/day. 
• At 1.8 GHz, performance dropped to 56.138 ns/day. 
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The energy consumption of GROMACS configuration is shown below: 
 
Configuration Performance 

(ns/day) 
Energy(J) 

GROMACS(No EAR) 55.856 238297 
GROMACS(threshold=0.65) 53.363 232404 (min_time) 
GROMACS(threshold=0.70) 53.215 219767 (min_time) 
GROMACS(threshold=0.05) 56.635 223957 (min_energy) 
GROMACS(threshold=0.10) 55.084 218022 (min_energy) 
GROMACS(freq=2 GHz) 56.322 207252 (monitoring) 
GROMACS(freq=1.9 GHz) 56.216 238364 (monitoring) 
GROMACS(freq=1.8 GHz) 56.138 239232 (monitoring) 

 
For a complete guide on EAR policies, refer to the official documentation:  
https://gitlab.bsc.es/ear_team/ear/-/wikis/Architecture#policies  
 
Slurm job scripts using EAR can be found in the shortbench repository of EPICURE’s 
GitLab (see section 5.1) in 
Platforms/MareNostrum5/<partition>/<benchmark>/<benchmark>_job.sh 
 
And the results can be found in  
Platforms/MareNostrum5/EAR_metrics/<partition>/<benchmark>/ 
 
For a complete user guide on using EAR, refer to the official documentation: 
https://gitlab.bsc.es/ear_team/ear/-/wikis/User-guide  
 

4.3. MERIC runtime system 
 
MERIC runtime system from the MERIC energy efficient HPC software suite is one of 
the flagship codes of Performance Optimisation and Productivity (POP) EuroHPC 
Centre of Excellence (CoE). As a CoE flagship code, the MERIC is being deployed as 
public software module to all EuroHPC systems to provide energy consumption 
measurement, and in some systems also power management (currently Karolina, and 
Deucalion). Thanks to the MERIC, the user has unified interface to read energy 
consumption despite the underlying hardware is different, using a hardware-specific 
power monitoring system, or the energy consumption is exposed by one of many 
possible ways.  
 
The user may use a command line utility to measure energy consumption of an 
application complete execution or link the application with MERIC library and 
instrument application's regions of interest.  
 
mericStatic -e RAPL,NVML -- start & 
/path/to/benchmark [app params] 
 
mericStatic -- stop 

https://gitlab.bsc.es/ear_team/ear/-/wikis/Architecture#policies
https://opencode.it4i.eu/epicure/shortbench
https://opencode.it4i.eu/epicure/shortbench
https://gitlab.bsc.es/ear_team/ear/-/wikis/User-guide
https://gitlab.bsc.es/ear_team/ear/-/wikis/Architecture#policies
https://opencode.it4i.eu/epicure/shortbench
https://opencode.it4i.eu/epicure/shortbench
https://gitlab.bsc.es/ear_team/ear/-/wikis/User-guide
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mericStatic – eval 
Figure 4-8: Example single-node usage of the mericStatic command line utility to measure energy consumption 
using RAPL and NVML performance counters.  

 
mpirun -np $nnodes --map-by ppr:1:node mericStatic -e RAPL,NVML -- start &  
# srun --overlap --ntasks-per-node 1 --nodes $nnodes mericStatic -e RAPL,NVML -- start 
& 
 
srun /path/to/benchmark [app params] 
 
mpirun -np $nnodes --map-by ppr:1:node mericStatic -- stop# srun  --ntasks-per-node 1 --
nodes $nnodes mericStatic -- stop 
 
mericStatic – eval 

Figure 4-9: Example multi-node usage of the mericStatic command line utility using srun or mpirun to start and 
stop the measurement in all allocated nodes ($nnodes). 

 
Runtime [s] = 279.835 
PCKG_ACTIVE_CORES_AVG_0 [J] = 858.128 
PCKG_ACTIVE_CORES_AVG_1 [J] = 837.706 
PCKG_0 [J] = 58676.202 
PCKG_1 [J] = 59319.097 
 
RAPL Energy consumption [J] = 117995.299 
RAPL Energy consumption [Wh] = 32.776 
 
Runtime [s] = 279.835 
GPU_0 [J] = 21789.773 
GPU_1 [J] = 22634.641 
GPU_2 [J] = 21576.006 
GPU_3 [J] = 21356.166 
GPU_4 [J] = 20476.886 
GPU_5 [J] = 20994.002 
GPU_6 [J] = 20145.965 
GPU_7 [J] = 21866.124 
 
NVML Energy consumption [J] = 170839.563 
NVML Energy consumption [Wh] = 47.455 

Figure 4-10: Example output of the mericStatic -- stop command from a single node of Karolina equipped with 
two AMD EPYC CPUs and eight Nvidia GPUs (benchmark executed in two compute nodes). 

job_id :2685249 
job_id :2685249 
Max Runtime [s] = 279.881 
NVML Energy consumption [J] = 338331.189 
RAPL Energy consumption [J] = 235217.793 
 
Total Energy consumption [J] = 573548.982 
Total Energy consumption [Wh] = 159.319 

Figure 4-11: Example output of the mericStatic -- eval command summarising measurement from all used 
compute nodes (the same measurement as in Figure 4-10). 

MERIC requires that user specify what power monitoring to use. Thus, user must know 
which ones are available in the system. For that purpose, the user may use the 
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systemInfo MERIC utility, which prints details about the underlying hardware and its 
power monitoring and power management possibilities. 
 
# SYSTEM INFORMATION 
        CPU name:         AMD EPYC 7763 64-Core Processor 
        Sockets per Node: 2 
        Cores per Socket: 64 
        Threads per Core: 1 
        GPU name:         NVIDIA A100-SXM4-40GB 
        GPUs per node:    8 
  
# CPU FREQUENCIES 
        Turbo CPU core frequencies:  3525000 kHz 
        Nominal CPU core frequency:  2450000 kHz 
  
# GPU FREQUENCIES 
        Memory: 1215000 kHz     SM: 1410000 - 210000 kHz (81 steps) 
        Default memory frequency: 1215000 kHz 
        Default streaming multiprocessor frequency: 1095000 kHz 
  
# CPU POWER LIMITS 
        CPU max power limit:     280 W 
        CPU power limit:             280 W 
  
# GPU POWER LIMITS 
        GPU max power limit:     400 W 
        GPU min power limit:     100 W 
        GPU default power limit: 400 W 
  
# AVAILABLE POWER MONITORING SYSTEMS 
        RAPL 
        NVML 

Figure 4-12: Output of the systemInfo utility when executed in a Karolina accelerated node. 

 
Slurm job scripts using mericStatic utility can be found in the shortbench repository of 
EPICURE’s GitLab (see section 5.1) in 
Platforms/Karolina/<partition>/<benchmark>/<benchmark>_job_meric.sh. 
 
See MERIC runtime system user guide for more information on how to use MERIC to 
instrument an application, and how use MERIC to optimize an application energy 
efficiency.  
https://code.it4i.cz/energy-efficiency/meric-suite/meric 
 

4.4. COUNTDOWN 
 
COUNTDOWN is a power management tool able to track MPI and application phases 
to automatically reduce power consumption of the computing elements during MPI 
communication and synchronization. The tool intercepts all MPI calls and execute the 
communication via an equivalent PMPI call, but after and before a prologue and an 
epilogue routine. These routines are defined in the “profile” and “event” COUNTDOWN 

https://opencode.it4i.eu/epicure/shortbench
https://code.it4i.cz/energy-efficiency/meric-suite/meric
https://opencode.it4i.eu/epicure/shortbench
https://code.it4i.cz/energy-efficiency/meric-suite/meric


 

 30 

modules, supporting monitoring and power management, respectively. Environment 
variables can be set to control the kind of HW performance counter, the configuration 
of the monitoring/management or the verbosity of logging. COUNTDOWN can be 
preloaded at runtime without source code modifications, or if needed it also provides 
a static-linking library to be used at compile time. 
COUNTDOWN implements three complementary profiling strategies to monitor 
application behaviour at varying levels of granularity: 

1. MPI Profiler: This component collects detailed information about the MPI 
activity of each process. It records MPI communicators, groups, and the core 
ID where the process is running. These metrics help characterize 
communication behaviour and detect potential inefficiencies. 

2. Fine-Grain Micro-Architectural Profiler: Running in parallel with the MPI 
profiler, this component gathers micro-architectural metrics at every MPI call 
using the RDPMC instruction in user space to access Intel’s Performance 
Monitoring Units (PMUs). It records values such as average core frequency, 
Time Stamp Counter (TSC), and instructions retired. Up to 8 configurable 
counters are available, allowing users to monitor application-specific low-level 
performance events. This fine-grain insight is valuable for identifying 
computational inefficiencies within MPI regions. 

3. Coarse-Grain Profiler: This profiler samples a broader range of hardware 
performance counters, including TSC, instructions retired, frequency, 
temperature, and C-state residencies at both core and uncore levels. It also 
monitors energy consumption and power usage using Intel’s Running Average 
Power Limit (RAPL) interface. Because access to these low-level hardware 
counters typically requires elevated privileges, COUNTDOWN uses the MSR 
SAFE driver. This driver enables secure access for standard users to a 
restricted subset of privileged architecture registers without compromising 
system security. Due to the overhead of frequent sampling, this profiler 
operates on a time-based interval: data is collected only if a predefined time Ts 
has passed since the last sample. The fine-grain profiler checks this interval 
and, if exceeded, triggers a new coarse-grain sample to maintain 
synchronization. 

Detailed data from the MPI profiler is stored in binary format to manage file size during 
long executions. In parallel, a human-readable text summary is also generated to 
provide an accessible overview of profiling results. 
 
CNTD source code can be downloaded from:  
https://github.com/EEESlab/countdown.git.  
 
The installation, using cmake, must be configured with the same MPI and compiler 
used for the application. A basic installation on Leonardo Booster can be achieved, for 
example, with the following commands 
 

module purge 
module load openmpi/4.1.6--gcc--12.2.0 
module load cuda/12.1 
cmake -DCNTD_ENABLE_CUDA=ON ../ 
make 

Figure 4-13: Basic installation of CNTD. 

https://github.com/EEESlab/countdown.git
https://github.com/EEESlab/countdown.git
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where -DCNTD_ENABLE_CUDA=ON is needed to profile GPU metrics. For additional 
configuration options, the user can rely on installation instructions in 
https://github.com/EEESlab/countdown/blob/develop/README.md.  
 
For the sampling approach of CNTD, the user needs to preload the library libcntd.so; 
the measurement can be customized with parameters setting, for example, the 
sampling interval and the name of the output directory. 
 

#!/bin/bash 
#SBATCH --nodes=1 
#SBATCH --ntasks-per-node=4 
#SBATCH --cpus-per-task=8 
#SBATCH --time=00:20:00 
#SBATCH --exclusive 
#SBATCH --gres=gpu:4 
#SBATCH --partition=boost_usr_prod 
  
module purge 
module load profile/lifesc  
module load gromacs/2022.3--openmpi--4.1.6--gcc--12.2.0-cuda-12.1 
 
export OMP_NUM_THREADS=8 
export OMP_PLACES=cores 
export OMP_PROC_BIND=close 
   
export GMX_ENABLE_DIRECT_GPU_COMM=1 
  
export CNTD_SAMPLING_TIME=0.1 
export CNTD_OUTPUT_DIR=CNTD 
export LD_PRELOAD=<path-to-installation>/src/libcntd.so 
 
srun -n 4 --cpu-bind=cores --cpus-per-task=$Slurm_CPUS_PER_TASK  gmx_mpi mdrun -s 
lignocellulose-rf.tpr -pin on -noconfout -nsteps 20000 -nstlist 200 -dlb yes 

Figure 4-14: Example job script using CNTD. 

The default measurement configuration will provide tables with the following metrics: 
• Execution time 
• Parallel information (number of MPI tasks, GPUs, nodes) 
• Energy of the job (PKG, DRAM, GPU) 
• Average power (PKG, DRAM, GPU) 
• Performance information (Time in MPI communications, maxmemory usage, 

CPU frequency, ...) 
• GPU reporting (utilization, memory, temperature) 
• More detailed information about MPI 

 

4.5. RAPL and NVIDIA NVML 
 
Intel and AMD performance counters exposed using Perf, intel_rapl, amd_energy, 
msr_safe, EAR, MERIC, GEOPM, COUNTDOWN, and many more. Each EuroHPC 
site uses a different interface to expose these counters. MERIC provides unified way 
to read RAPL from them all – once deployed. Deployment currently in progress with 
support of EPICURE Project: 78 - EHPC-DEV-2024D09-054. 
Similarly, information provided by NVML is used by MERIC and COUNTDOWN. 

https://github.com/EEESlab/countdown/blob/develop/README.md
https://github.com/EEESlab/countdown/blob/develop/README.md
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4.6. Dashboards 
 
BSC HPC | User Portal 
 
The HPC User Portal (https://hpcportal.bsc.es/) is a job and resource monitoring 
platform designed with the needs of HPC users in mind. It allows users to check the 
status and general resource usage metrics of their submitted jobs. In addition, the 
portal provides machine statistics, such as the number of available and allocated 
CPUs, for BSC's primary HPC systems. The platform is still under active development 
and will progressively offer more features over time. Currently, for the Accelerated 
(ACC) partition, power consumption data is not yet available, but it is being worked on. 
Some of the features provided by HPC portal are listed below: 
 
Job monitoring 
The main page of the HPC User Portal is the job monitoring screen. It will list all your 
jobs launched in all the machines by every account you have. This list contains a brief 
listing of the general characteristics of each job (like its name, user, status, node/task 
configuration...). If the job listed is in the “running” status, it will also show you the 
current CPU and memory usage. 
 

 
Once a specific job is selected, we get the job details: 

Figure 4-15: Main page of the HPC User Portal. 

https://hpcportal.bsc.es/
https://hpcportal.bsc.es/
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CPU usage, Memory usage and Power consumption are also provided. 
 
 

 
Figure 4-17: CPU usage. 

 

 

 
Figure 4-18: Memory usage. 

 
 

 
 

 

 
 
 
 
  

Figure 4-16: Job details. 

Figure 4-19: Power consumption. 
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LLview 
 
LLview is a set of software components for monitoring clusters controlled by a 
resource manager and scheduler system. It collects existing data from the system and 
presents it to the user via a web portal. (https://llview.fz-juelich.de/) 
 
At JSC, LLview collects data from the Slurm workload manager, various daemons 
running on compute nodes, and sensors that either log information to files or interface 
with the Prometheus monitoring system. LLview then aggregates and reorganises the 
monitoring data, stores the information required for reporting in separate SQLite 
databases and presents it to the user via a web-based front-end portal. 
The LLview Job Reporting web portal provides: 

• job list tables, containing their aggregated performance information (for jobs 
that are running or have already finished within three weeks). 

• timeline graphs per job for the key performance metrics. 
• access to detailed job reports, including an interactive report or a static PDF 

version. 
• role-based access to different levels of information. 
• live view of the system. 
 

In Figure 4-20, a snapshot of the Jobs Dashboard shows a table with one job per 
row and each column containing one of its metrics. Some columns are colour coded 
to indicate potential problems. Detailed job reports can be accessed in the rightmost 
columns. Selecting a row displays aggregated graphs at the bottom of the page. 
 

 
The dashboard provides a wide range of metrics, grouped into the following 
categories: 

Figure 4-20: LLview Job reporting web portal. 

https://llview.fz-juelich.de/
https://llview.fz-juelich.de/
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• Job metadata (e.g. Job ID, username, project id, start time, estimated end 
time). 

• CPU (e.g. average CPU usage, number of active physical/logical cores, 
memory usage). 

• GPU (e.g. GPU utilization, memory usage, temperature and performance 
states, indicators for potential throttling or reduced performance). 

• I/O and network activity (e.g. read/write throughput, file open/close operation 
rates, data and packet input/output rates). 

This comprehensive set of metrics enables users to monitor system performance, 
detect inefficiencies, and troubleshoot job behaviour effectively. 
 
A significant recent enhancement to the LLview is the support for multiple levels of 
power telemetry data. This addition allows granular and comprehensive tracking of 
power consumption during job execution. Currently supported power metrics include: 

• Node Power: the total power draw for the entire node at the moment of 
sampling. 

• CPU Power: the instantaneous power consumed by the CPU package, 
including its memory controllers and system I/O. 

• GPU Power: the current power draw of each GPU device, including its onboard 
memory. 

• Superchip Power: the power usage for each “superchip” (i.e. combined Grace 
and Hopper modules). 

 
Energy consumption is calculated by aggregating power consumption data collected 
at one-minute intervals throughout the duration of a job. The resulting energy values 
are presented in a variety of units, including watt-hours (Wh), megajoules (MJ) and 
kilowatt-hours (kWh), providing flexibility for different analysis needs.  
 
Figure 4-21 illustrates the display of power and energy values on the LLview web 
portal. The metrics highlighted within the red frame represent power and energy 
values, with each row corresponding to an individual job. For the currently selected 
job (indicated by the yellow highlighted row), detailed energy metric timelines are 
displayed at the bottom. These timelines provide a temporal view of power 
consumption, simplifying analysis of energy usage patterns throughout the job's 
execution. 
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IT4Innovations User Portal and SCS Information System 
 
For information about the current clusters’ usage, IT4I users can go to User Portal 
https://extranet.it4i.cz/rsweb. They can switch between the clusters by clicking on their 
names in the upper right corner. Users can filter their search by clicking on the 
respective keywords. 
 
In addition to general information about the jobs, like runtime, queue, etc., the portal 
now also contains information about CPU, GPU, and entire node energy consumption 
for any job. Users can also check the power consumption timeline of selected 
components of the compute nodes. Examples of these reports are shown in the figures 
below.  
 

Superchip Power

Node Power
Hopper (GPU) Power

Grace (CPU) Power Cap

Grace (CPU) Power

Power values and  
energy estimation per job

Figure 4-21: Power and energy values displayed on LLview web portal. 

https://extranet.it4i.cz/rsweb
https://extranet.it4i.cz/rsweb
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The IT4Innovations Information System (SCS IS) is a comprehensive platform for 
managing the lifecycle of HPC projects. It allows users and primary investigators to 
manage project applications, memberships, and resources from the initial request 
through to completion. 

Figure 4-22: Example of job information provided to users, including energy consumption of CPUs and GPUs. 

Figure 4-23: Users can also visualize the power consumption of their job in time. This example shows the power 
consumption of individual GPUs on a selected compute node. 
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During the project's active phase, the system provides detailed monitoring capabilities. 
This includes tracking the usage of allocated computing resources, which are 
measured in NodeHours, against the approved allocation. As shown in the provided 
image, the system also offers a specific “Energy Consumption” report. This report 
details the energy used in Megajoules (MJ) and Kilowatt-hours (kWh), and the 
associated carbon footprint in CO₂ (kg), with data broken down by CPU, GPU, and 
Node usage.  
 

 

  

Figure 4-24: Example of energy consumption of CPUs, GPUs and nodes per project. 
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5. Overview 
 
Since not all machines use the same metrics (see the “Measurements” section for the 
different machines), the plots shown are just an indication. Moreover, energy usage 
by e.g. network components or storage is not measured. If in the future one runtime 
system would be available on all machines, it would be easier to compare. We also 
learned that the sampling frequency for the metrics might influence the results 
significantly. 
 
All runs always use full nodes. The most optimal configuration on one node 
(combination of MPI ranks, threads and GPUs if applicable) is taken as a baseline. 
This configuration is used in subsequent runs on two, four, eight, … nodes. Consider 
that the graphs show always the number of nodes, irrespective of the number of CPU 
cores or GPUs that might be different in the machines. 
 
It becomes clear from the graphs, if not known already, that it does not make sense to 
keep increasing the number of nodes hoping that computations will finish more rapidly 
at a much lower energy cost. And it is important to determine the most optimal 
combination of MPI ranks, threads and GPUs before submitting a whole bunch of 
computations. 
 
For GROMACS, CP2K and NAMD, we show following plots: 

• “Performance-Energy” plot per machine, 
• “Energy usage” for all machines. 

 
In addition, we also show for GROMACS and NAMD  

• “Normalized energy usage per ns/day”. 
 
All the data shown in the graphs and tables in the following sections are available in 
the different Platform folders of the shortbench repository of EPICURE’s GitLab. The 
Excel file combining all data can be found there as well. 
 
 

5.1. Job script examples  
 
The table below contains references to job script examples used for application 
executions with power energy measurements. For some machines only the regular 
Slurm scripts are available. For others, the example scripts (also) contain references 
to external systems (MareNostrum5, EAR; Leonardo, CINEMON and COUNTDOWN; 
Karolina, MERIC). 
 
  

https://opencode.it4i.eu/epicure/shortbench
https://opencode.it4i.eu/epicure/shortbench
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Machine 
 

 
Application 

 
Partition 
(library) 
 

 
Job script example 

MareNostrum5 GROMACS CPU-X86 
(EAR) 

MN5-GROMACS-CPU-X86 example 
 

GPU 
(EAR) 

MN5-GROMACS-GPU example 
 

CP2K CPU-X86 
(EAR) 

MN5-CP2K-CPU-X86 example 
 

GPU 
(EAR) 

MN5-CP2K-GPU example 
 

NAMD CPU-X86 
(EAR) 

MN5-NAMD-CPU-X86 example 
 

GPU 
(EAR) 

MN5-NAMD-GPU example 
 

DECAULION GROMACS CPU-X86 
 

DECAULION-GROMACS-CPU-X86 
example 

CPU-ARM DECAULION-GROMACS-CPU-ARM 
example 

GPU DECAULION-GROMACS-GPU 
example 

CP2K CPU-X86 DECAULION-CP2K-CPU-X86 
example 

CPU-ARM DECAULION-CP2K-CPU-ARM 
example 

GPU DECAULION-CP2K-GPU example 
NAMD CPU-X86 DECAULION-NAMD-CPU-X86 

example 
CPU-ARM N/A 
GPU DECAULION-NAMD-GPU example 

JEDI GROMACS GPU JEDI-GROMACS-GPU example 
MELUXINA GROMACS CPU-X86 MELUXINA-GROMACS-CPU-X86 

example 
GPU MELUXINA-GROMACS-GPU 

example 
CP2K GPU-X86 MELUXINA-CP2K-CPU-X86 example 

GPU MELUXINA-CP2K-GPU example 
NAMD CPU-X86 MELUXINA-NAMD-CPU-X86 example 

GPU MELUXINA-NAMD-GPU example 
VEGA GROMACS CPU VEGA-GROMACS-CPU-X86 example 

GPU VEGA-GROMACS-GPU example 
CP2K CPU VEGA-CP2K-CPU-X86 example 

GPU VEGA-CP2K-GPU example 
NAMD CPU VEGA-NAMD-CPU-X86 example 

GPU VEGA-NAMD-GPU example 
CINECA GROMACS CPU 

(CINEMON) 
CINECA-GROMACS-CPU-X86 
example 

GPU CINECA-GROMACS-GPU example 

https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MareNostrum5/GPP/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MareNostrum5/ACC/GROMACS/gromacs_job.sh?ref_type=heads
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MareNostrum5/GPP/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MareNostrum5/ACC/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MareNostrum5/GPP/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MareNostrum5/ACC/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/X86/GROMACS/gromacs.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/X86/GROMACS/gromacs.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/ARM/GROMACS/gromacs.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/ARM/GROMACS/gromacs.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/GPU/GROMACS/gromacs.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/GPU/GROMACS/gromacs.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/X86/CP2K/cp2k_jube_run
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/X86/CP2K/cp2k_jube_run
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/ARM/CP2K/cp2k_jube_run
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/ARM/CP2K/cp2k_jube_run
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/GPU/CP2K/cp2k_jube_run
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/GPU/NAMD_memopt/namd.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/GPU/NAMD_memopt/namd.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/GPU/NAMD_memopt/namd.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/Deucalion/Platforms/JEDI/ACC/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/CPU/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/CPU/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/GPU/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/GPU/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/CPU/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/GPU/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/GPU/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/GPU/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Vega/GPP/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Vega/ACC/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Vega/GPP/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Vega/ACC/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Vega/GPP/NAMD/namd_job_adjusted.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Vega/ACC/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/DCGP/GROMACS/cinemon/logfiles/000000/000000_submit_N1np56/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/DCGP/GROMACS/cinemon/logfiles/000000/000000_submit_N1np56/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/BOOSTER/GROMACS/cinemon/logfiles/000000/000000_submit_N1np4/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MareNostrum5/GPP/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MareNostrum5/ACC/GROMACS/gromacs_job.sh?ref_type=heads
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MareNostrum5/GPP/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MareNostrum5/ACC/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MareNostrum5/GPP/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MareNostrum5/ACC/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/X86/GROMACS/gromacs.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/X86/GROMACS/gromacs.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/ARM/GROMACS/gromacs.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/ARM/GROMACS/gromacs.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/GPU/GROMACS/gromacs.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/GPU/GROMACS/gromacs.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/X86/CP2K/cp2k_jube_run
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/X86/CP2K/cp2k_jube_run
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/ARM/CP2K/cp2k_jube_run
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/ARM/CP2K/cp2k_jube_run
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/GPU/CP2K/cp2k_jube_run
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/GPU/NAMD_memopt/namd.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/GPU/NAMD_memopt/namd.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Deucalion/GPU/NAMD_memopt/namd.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/Deucalion/Platforms/JEDI/ACC/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/CPU/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/CPU/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/GPU/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/GPU/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/CPU/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/GPU/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/GPU/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/MeluXina/GPU/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Vega/GPP/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Vega/ACC/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Vega/GPP/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Vega/ACC/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Vega/GPP/NAMD/namd_job_adjusted.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Vega/ACC/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/DCGP/GROMACS/cinemon/logfiles/000000/000000_submit_N1np56/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/DCGP/GROMACS/cinemon/logfiles/000000/000000_submit_N1np56/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/BOOSTER/GROMACS/cinemon/logfiles/000000/000000_submit_N1np4/work/submit.job
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(CINEMON)  
GPU 
(COUNTDOWN) 

CINECA-GROMACS-GPU example 
 

CP2K CPU 
(CINEMON) 

CINECA-CP2K-CPU-X86 example 
 

GPU 
(CINEMON) 

CINECA-CP2K-GPU example 
 

GPU 
(COUNTDOWN) 

CINECA-CP2K-GPU example 

NAMD CPU 
(COUNTDOWN) 

CINECA-NAMD-CPU-X86 example 
 

GPU 
(CINEMON) 

CINECA-NAMD-GPU example 
 

KAROLINA GROMACS CPU KAROLINA-GROMACS-CPU-X86 
example 

CPU (MERIC) KAROLINA-GROMACS-CPU-X86 
example 

GPU KAROLINA-GROMACS-GPU 
example 

GPU  
(MERIC) 

KAROLINA-GROMACS-GPU 
example 

CP2K CPU KAROLINA-CP2K-CPU-X86 example 
CPU 
(MERIC) 

KAROLINA-CP2K-CPU-X86 example 
 

GPU KAROLINA-CP2K-GPU example 
GPU 
(MERIC) 

KAROLINA-CP2K-GPU example 
 

NAMD CPU KAROLINA-NAMD-CPU-X86 example 
CPU 
(MERIC) 

KAROLINA-NAMD-CPU-X86 example 
 

GPU KAROLINA-NAMD-GPU example 
GPU 
(MERIC) 

KAROLINA-NAMD-GPU example 

LUMI GROMACS CPU LUMI-GROMACS-CPU-X86 example 
GPU LUMI-GROMACS-GPU example 

CP2K CPU LUMI-CP2K-CPU-X86 example 
GPU LUMI-CP2K-GPU example 

NAMD CPU LUMI-NAMD-CPU-X86 example 
GPU LUMI-NAMD-GPU example 

DISCOVER GROMACS 
 

CPU DISCOVER-GROMACS-CPU-X86 
example 

CP2K CPU DISCOVER-CP2K-CPU-X86 example 
NAMD CPU DISCOVER-NAMD-CPU-X86 

example 
 
 

  

https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/BOOSTER/GROMACS/countdown/logfiles/000001/000000_submit_N1np4/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/DCGP/CP2K/cinemon/logfiles/000000/000000_submit_N1np56/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/BOOSTER/CP2K/cinemon/logfiles/000000/000000_submit_N1np4/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/BOOSTER/CP2K/countdown/logfiles/000000/000000_submit_N1np4/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/DCGP/NAMD/cinemon/logfiles/000000/000000_submit_N1np56/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/BOOSTER/NAMD/cinemon/logfiles/000000/000000_submit_N1np4/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/GROMACS/gromacs_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/GROMACS/gromacs_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/GROMACS/gromacs_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/GROMACS/gromacs_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/CP2K/cp2k_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/CP2K/cp2k_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/NAMD/namd_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/NAMD/namd_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/LUMI/LUMI-C/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/LUMI/LUMI-C/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/LUMI/LUMI-C/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/LUMI/LUMI-G/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/LUMI/LUMI-C/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/LUMI/LUMI-G/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/discoverer/Platforms/Discoverer/GPP/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/discoverer/Platforms/Discoverer/GPP/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/discoverer/Platforms/Discoverer/GPP/CP2K/cp2k_job.batch
https://opencode.it4i.eu/epicure/shortbench/-/raw/discoverer/Platforms/Discoverer/GPP/NAMD/namd_job.sbatch
https://opencode.it4i.eu/epicure/shortbench/-/raw/discoverer/Platforms/Discoverer/GPP/NAMD/namd_job.sbatch
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/BOOSTER/GROMACS/countdown/logfiles/000001/000000_submit_N1np4/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/DCGP/CP2K/cinemon/logfiles/000000/000000_submit_N1np56/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/BOOSTER/CP2K/cinemon/logfiles/000000/000000_submit_N1np4/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/BOOSTER/CP2K/countdown/logfiles/000000/000000_submit_N1np4/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/DCGP/NAMD/cinemon/logfiles/000000/000000_submit_N1np56/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Leonardo/BOOSTER/NAMD/cinemon/logfiles/000000/000000_submit_N1np4/work/submit.job
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/GROMACS/gromacs_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/GROMACS/gromacs_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/GROMACS/gromacs_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/GROMACS/gromacs_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/CP2K/cp2k_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/CP2K/cp2k_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/GPP/NAMD/namd_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/Karolina/ACC/NAMD/namd_job_meric.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/LUMI/LUMI-C/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/LUMI/LUMI-C/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/LUMI/LUMI-C/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/LUMI/LUMI-G/CP2K/cp2k_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/LUMI/LUMI-C/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/main/Platforms/LUMI/LUMI-G/NAMD/namd_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/discoverer/Platforms/Discoverer/GPP/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/discoverer/Platforms/Discoverer/GPP/GROMACS/gromacs_job.sh
https://opencode.it4i.eu/epicure/shortbench/-/raw/discoverer/Platforms/Discoverer/GPP/CP2K/cp2k_job.batch
https://opencode.it4i.eu/epicure/shortbench/-/raw/discoverer/Platforms/Discoverer/GPP/NAMD/namd_job.sbatch
https://opencode.it4i.eu/epicure/shortbench/-/raw/discoverer/Platforms/Discoverer/GPP/NAMD/namd_job.sbatch
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5.2. Performance-energy graph 
 
This graph shows both the normalized performance and the energy. Both quantities 
are plotted such that they start in the same point, at the baseline. From this baseline 
quantity, a dotted line is drawn. The graph has two y-axes, on the left and the right of 
the graph, where the normalized performance and total energy consumption are given 
respectively. 
 
The normalized performance is obtained by dividing the performance by the number 
of nodes used for that calculation. The resulting quantity, the normalized performance, 
is an indication for the computation time if the equivalent calculation is performed on 
the baseline system of 1 node. This value is expressed in units of [ns/day/node]. 
Example: if the performance is 12,90 ns/day on two nodes, it is shown as 12,90 / 2 = 
6,45 ns/day/node. 
 
The energy on the graph is the total energy consumption reported for the number of 
nodes, expressed in [kJ]. This quantity does not need to be rescaled as the same 
calculation is performed on the different systems number of nodes. In general, more 
nodes require less computation time but more simultaneous power consumption, such 
that the overall energy consumption is in general larger for multiple nodes. 
 
For the CP2K calculations, the efficiency is taken, with the lowest node number as the 
baseline of 100%. 
 
In general, the efficiency or performance of the calculation will go down on multiple 
nodes, the energy consumption will increase. The values will go further away from the 
baseline. In the ideal cases, both lines would stay as close to the dotted line as 
possible. 
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Figure 5-1: Graphs for GROMACS CPU. 
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Figure 5-2: Graphs for CP2K CPU. 
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Figure 5-3: Graphs for NAMD CPU. 
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Figure 5-4: Graphs for GROMACS GPU. 
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Figure 5-5: Graphs for CP2K GPU. 
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Figure 5-6: Graphs for NAMD GPU. 
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Figure 5-7: Graph for GROMACS ARM. 

 
CP2K 
 
 

Figure 5-8: Graph for CP2K ARM. 
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5.3. Energy usage 
 
This plot shows the energy usage as reported by the different systems, expressed in 
[kJ]. 
 
CPU 
GROMACS 
 

 
Figure 5-9: Energy usage graph for GROMACS CPU. 
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Figure 5-10: Energy usage graph for CP2K CPU. 

 
NAMD 
 

 
Figure 5-11: Energy usage graph for NAMD CPU. 

  

0,00

100,00

200,00

300,00

400,00

500,00

600,00

700,00

800,00

900,00

1000,00

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y 
[k

J]

# nodes

Energy usage

LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion Discoverer

0,00

500,00

1000,00

1500,00

2000,00

2500,00

3000,00

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y 
[k

J]

# nodes

Energy usage

LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion Discoverer



 

 52 

GPU 
GROMACS 
 

 
Figure 5-12: Energy usage graph for GROMACS GPU. 
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Figure 5-13: Energy usage graph for CP2K GPU. 

 

0,00

100,00

200,00

300,00

400,00

500,00

600,00

700,00

800,00

900,00

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y 
[k

J]

# nodes

Energy usage

LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion JEDI

0,00

500,00

1000,00

1500,00

2000,00

2500,00

1 2 4 8 16

C
on

su
m

ed
 E

ne
rg

y 
[k

J]

# nodes

Energy usage

LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion



 

 53 

NAMD 
 

 
Figure 5-14: Energy usage graph for NAMD GPU. 

 
 

5.4. Normalized energy usage per ns/day 
and per 1/s 

 
This plot shows the energy cost to perform a similar computation on a one node 
equivalent for one computational cycle. It uses both the concept of normalized 
performance of the performance-energy plot, and the total energy usage. The total 
energy usage is divided by the normalized performance to obtain the quantity given 
on this plot, expressed in [kJ/(ns/day/node)] or [kJ/(1/s/node)]. It shows an increase of 
the energy cost by increasing number of nodes, and a general “measure” of the 
efficiency of the machine. As this value is rescaled with the performance, it also 
includes the relative speedup between the different machine, but also the relative 
additional energy consumption for this speedup. This value should be low, as this 
means a relative low energy usage and a relatively high (normalized) performance. 
The main difference between this graph and the total energy difference, is that this 
graph also includes the runtime of the calculation, where the energy usage just reports 
the total energy consumed over the whole calculation. 
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Figure 5-15: Normalized energy usage graph for GROMACS CPU. 
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Figure 5-16: Normalized energy usage graph for CP2K CPU. 
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NAMD 
 

 
Figure 5-17: Normalized energy usage graph for NAMD CPU. 

 
GPU 
GROMACS 
 

 
Figure 5-18: Normalized energy usage graph for GROMACS GPU. 
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CP2K 
 

 
Figure 5-19: Normalized energy usage graph for CP2K GPU. 

 
NAMD 
 

 
Figure 5-20: Normalized energy usage graph for NAMD GPU. 
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5.5. Performance and energy heat maps 
 
The heat maps below show the performance and the energy usage for the different 
applications. The latter is also visible in graph format in Section 5.3. The heat map is 
considered per number of nodes.  
 
 
CPU - Performance 
GROMACS 
 
Performance (ns/day) 
 

 
 
 
CP2K 
 
TOTAL TIME MAXIMUM (s) 
 

 
 
 
NAMD 
 
Performance (ns/day) 
 

 
 
 
 
  

LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion Discoverer
1 6,52 5,88 5,88 4,57 8,08 8,11 5,40 6,40
2 12,90 10,97 11,86 9,00 15,16 15,12 10,67 12,94
4 24,70 18,60 22,20 16,87 28,94 24,58 19,94 25,74
8 46,77 32,81 39,20 31,07 53,53 40,86 36,60 47,26
16 82,35 46,40 71,15 53,32 91,08 52,33 61,95 80,56

LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion Discoverer
1 446 445 535 518 307 401 408 425
2 244 273 303 304 172 258 241 258
4 145 160 188 180 97 174 150 152
8 89 104 120 137 59 118 100 101
16 68 85 87 76 34 120 83 70

LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion Discoverer
1 0,12 0,13 0,11 0,08 0,10 0,10 0,08 0,13
2 0,23 0,26 0,22 0,16 0,20 0,21 0,16 0,27
4 0,46 0,45 0,37 0,30 0,32 0,40 0,32 0,49
8 0,89 0,81 0,78 0,54 0,59 0,79 0,63 1,17
16 2,45 1,21 2,06 0,88 1,37 1,87 1,70 1,84
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CPU – Energy usage in [kJ] 
GROMACS 
 

 
 
 
CP2K 
 

 
 
 
NAMD 
 

 
 
 
The best performance for GROMACS CPU was obtained on MareNostrum 5 with a 
total of 91,08 ns/day using 16 nodes. The lowest energy was consumed by MeluXina 
using 4 nodes with 326,97 kJ, closely followed by Karolina and Leonardo using 1 node 
with respectively 334,05 kJ and 339,05 kJ. 
 
MareNostrum 5 completed the CP2K CPU benchmark in 34 seconds using 16 nodes. 
The lowest energy was consumed by Deucalion using 1 node with 213,75 kJ, closely 
followed by Karolina with 216,57 kJ using 1 node. 
 
The best performance for NAMD CPU was obtained on LUMI with a total of 2,45 
ns/day using 16 nodes. The lowest energy was consumed by LUMI as well using the 
same 16 nodes with 978,26 kJ. 
 
  

LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion Discoverer
1 360,16 394,38 766,96 334,05 398,12 339,05 357,69 371,30
2 372,47 372,89 758,62 333,90 437,86 395,10 368,07 372,64
4 391,61 326,97 657,33 352,31 487,24 447,42 401,19 383,56
8 414,44 387,20 657,51 379,58 570,45 563,39 456,98 440,65
16 491,29 463,77 403,18 433,31 863,00 932,68 568,48 544,05

LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion Discoverer
1 294,92 249,08 329,14 216,57 265,07 321,14 213,75 291,05
2 330,93 294,27 367,40 250,65 304,10 416,23 232,90 359,03
4 287,19 324,76 447,95 269,45 338,92 572,71 265,42 421,65
8 473,51 408,21 559,47 488,66 330,81 740,46 317,17 571,28
16 716,28 653,16 770,77 588,12 388,89 1492,97 493,50 794,34

LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion Discoverer
1 1187,32 1063,54 1180,70 1027,15 1829,13 1541,03 1413,09 1161,45
2 1296,20 1106,89 1223,24 1060,93 1870,39 1530,21 1446,58 1226,76
4 1264,26 1207,69 1409,53 1102,18 2241,73 1655,20 1454,59 1436,22
8 1301,04 1145,11 1530,47 1223,17 2564,66 1840,27 1524,36 1457,86
16 978,26 1373,35 1339,35 1440,17 2333,07 1929,51 1173,66 2078,29
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GPU - Performance 
GROMACS 
 
Performance (ns/day) 
 

 
 
 
CP2K 
 
TOTAL TIME MAXIMUM (s) 
 

 
 
 
NAMD 
 
Performance (ns/day) 
 

 
 
 
 
  

LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion
1 283 218 110 206 153 359 259
2 208 165 241 120 107 260 191
4 111 103 146 91 68 114 133
8 87 101 251 63 50 95
16 56 85 151 66 38 58
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GPU - Energy usage in [kJ] 
GROMACS 
 

 
 
 
CP2K 
 

 
 
 
NAMD 
 

 
 
 
The best performance for GROMACS GPU was obtained on Karolina with a total of 
177,66 ns/day using 16 nodes. The lowest energy was consumed by Vega using one 
node with 135,42 kJ. 
 
MareNostrum 5 completed the CP2K GPU benchmark in 38 seconds using 16 nodes. 
The lowest energy was consumed by Vega using one node with 217,76 kJ. 
 
The best performance for NAMD GPU was obtained on MareNostrum 5 with a total of 
6,56 ns/day using 16 nodes, closely followed by LUMI with a total of 6,46 ns/day using 
16 nodes. The lowest energy was consumed by LUMI using two nodes with 383,83 
kJ. 
 
Remark: the measurements on MeluXina on two nodes (in italics) will be double 
checked. 

  

LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion JEDI
1 180,83 199,75 135,42 231,48 151,94 190,80 232,79 159,00
2 249,57 128,57 146,46 271,86 212,24 191,17 353,70 240,00
4 258,09 338,03 170,06 335,65 499,10 237,95 437,97 354,00
8 395,12 318,44 678,87 408,16 439,82 254,21 489,00
16 630,01 388,67 736,15 612,11 800,31 333,94 1154,00

LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion
1 253,35 240,58 217,76 381,05 252,54 252,71 324,28
2 355,49 160,76 271,94 419,43 308,31 332,41 468,38
4 397,70 426,69 292,82 723,56 407,75 309,14 668,31
8 620,25 745,29 936,23 990,64 1612,20 469,34
16 796,12 1087,89 1251,58 2104,44 1765,96 578,52

LUMI MeluXina Vega Karolina MN5 Leonardo Deucalion
1 539,28 567,27 512,24 816,90 574,61 824,83
2 383,83 220,58 1103,47 871,85 805,60 994,75 938,86
4 454,08 638,07 2089,62 1090,58 1195,85 1058,25 1063,01
8 441,45 798,74 4247,02 1233,31 1183,12 1080,64
16 454,64 855,90 8446,52 1793,60 1925,27 1144,74
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6. Conclusion 
 
Chapter 2 describes the benchmarks being used to give an overview of energy 
measurements on the different machines. Chapter 3 presents the available EuroHPC 
machines, including specifications, measurement tools and other available libraries. 
Chapter 4 discusses tools which provide extra information outside of the default data 
gathered by Slurm, useful for collecting and/or influencing energy usage, together with 
an overview of dashboards available on some sites. Chapter 5 contains the results of 
running the benchmarks using GROMACS, CP2K and NAMD, on CPU and GPU, 
providing both performance and energy usage data. 
 
It might be tempting to pick to the most “green-ish” machine from the heat maps for 
your next computations. However, we suggest to not blindly follow the tables and take 
the following remarks into account: 
 

• Different versions of the same program might have been used, or the same 
version with different compilation options. 

• The placement of the jobs by the scheduler might be different. 
• The pinning might be different. 
• Energy measurements might be different: output directly from sensors, or via 

specific libraries; sampling rate; … 
• Even if the hardware is very similar (MeluXina, Vega and Discoverer), results 

might be different. 
• The number of CPU cores or GPUs might be different. 
• Make sure to use full nodes (“exclusive”) when comparing machines. 

 
 


