
Containerization in
HPC Environments

Teo Prica, IZUM

Agenda

1. Context
2. Software
3. Containerization
4. Workloads
5. Security
6. Containers at HPC Vega

Introduction

 The webinar on basic containerization in HPC environments.
 An overview of key tools and techniques.
 Use of Singularity/Apptainer containers:

 Parallelisation wit MPI,
 CUDA for GPU-accelerated workloads,
 managing smaller and lightweight environments.

Artificial Intelligence
 AI in focus.
 EuroHPC AI Factories.

 Future AI-Optimized HPC.
 Specialized hardware requirements.
 Industrial users (SMEs).

 Challenges..
Software integration in HPC,
codes, workloads, optimization,
skill gap, …

thttps://ieu-monitoring.com/wp-content/uploads/EuroHPC-AI-Factories-ecosystem.jpg

Software in HPC

 Scientific software presents challenges,
 lacking of comments and examples,
 insufficient documentation,
 written by scientists forced to code,
 lack of support,
 non-standard installation,
 non-optimized,
 and beyond.

https://imgs.xkcd.com/comics/compiling.png

Dependency Hell

https://assets.browserlondon.com/wp-content/uploads/2020/08/XKCD-
dependency.png

 Is a common problem due
to complex, conflicting, or
overlapping dependencies
in the software stack.

Software in HPC

 Package managers,
 EasyBuild, Spack, Conda, ..

 system packages,
 environment modules,
 custom builds,
 containers,
 and beyond. Spack

Container
 A container is a running process on

the system controlled by the host kernel.
 Isolated,
 lightweight,
 standalone,
 portable,
 reproducible,
 secure,
 and executable software package.

 Everything needed to run an software.

https://bi-insider.com/wp-content/uploads/2021/09/Containers-Virtual-
Machines.png

https://miro.medium.com/v2/resize:fit:600/1*yTyYD5XYYAGMbhgLoCgeJw.png

Container: Keywords
Definition file (recipe)

Instructions for making the image.
Build

Compilation/converting the recipe into image.
Image

Compiled container, ready to be used.
Repository

Place to store and share the images.
Container

Running image.
Runtime

Software that manages containers.

Containarization in HPC
 Containers in HPC offer flexible and

alternative software deployment.
 Avoid local installation on the system.

Multiple versions.
 Container shares the physical hardware.

and OS with other containers.
 Comparable to bare-metal.
 Container != VM

 Embraced technology, slow adaptation.
 Convenient option for industrial users.

https://media.licdn.com/dms/image/v2/D5612AQECdlnTOjwf5g/article-cover_image-shrink_720_1280/article-cover_image-shrink_720_1280/0/1687160334655?e=2147483647&v=beta&t=wZebUrPXlo1sNgkrCHjuIAMwt0NZeWmfKQE0F08tc4I

Isolation != Security

Integrated into cloud-based, HPC, AI/ML workloads, and scientific computing frameworks.

Containarization in HPC
Portability, Deployment, and Scalability

Ensures that software runs consistently across different environments.

Reproducibility

Definition files means documentation and procedure could be repeated.

Dependency Management
Avoids conflicts by encapsulating software dependencies.

User Flexibility

Allows users to use their preferred software stacks, legacy code, ..

Performance Efficiency
Unlike VMs, containers introduce minimal overhead.

Security and Isolation
User privileges, namespaces, controlled environments, ..

 Early concepts of isolation from 1970’s.
 Convergence of HPC, AI & Cloud!
 Not suitable for all software!
 Containers are not just in HPC.

 Cloud computing,
 edge computing,
 serverless computing
 AI/ML Workloads
 CI/CD, Devops, ..

 Charliecloud, Singularity/Apptainer, Enroot, Docker, Podman, Sarus, ...

Containers have come a long way!

Apptainer, formerly Singularity

 A container platform designed specifically for HPC, MPI and scientific workloads.

 It allows users to run containers without root privileges.
 Ideal for multi-user environments.
 Simplifies the workflow (end-to-end).
 Integrated in common workload manager Slurm.
 Secure. Portable. Encrypted.

https://sylabs.io/singularity-pro/

https://apptainer.org

Common Workflow

 Preparation, build
 Use a container definition, specify software environment.

 Registry
 Push the container in a repository.

 Deploy
 Run the container via job schedulers.

 Execute, scale
 The container runs across multiple nodes,

leveraging HPC resources.

https://docs.sylabs.io/guides/2.6/user-guide/_images/build_input_output.png

Common Workflow

https://singularityware.github.io/

Pull, Run, and Exec a Container
 Get image, run, and execute within existing container from repository.
 Pull

 Run

 Exec

Building a Singularity Container
 Singularity Definition File.

 Building the Singularity Container from Definition File.

 Execute “%runscript” through run command.

 Building a container requires root (or fakeroot)
privileges, but running it does not.

 Execute commands inside a container.

 Interactive shell inside the writable container.

 Interactive shell inside the container.

 Inspect the container (metadata, def,..).

Running Commands in a Container

Convert it
 Docker container can be “converted” to Singularity container

 Convert Singularity image (.sif) to writable image (sandbox), and vice versa.

https://singularityhub.github.io/singularity-cli/

 Singularity Python API,
 working with Singularity containers,
 easy installation,
 managing converts from “Dockerfile”,
 and beyond.

spython

Managing Files and Data

 In HPC environments where file I/O speed is critical.

 Many small files may stress parallel system,

 single container file can improve performance,

 optimize your code to minimize file system accesses,

 advised to use environments.
 Use bind mounts to access large directories on the host system.

 Multiple binds per container,

 automatic bind of home directory, and local files,

 mount an additional layer (OverlayFS) over the existing Singularity container.

 Large-scale storage in HPC environments,

 Leverage scratch directories,

 local storage (/tmp) for high-performance I/O.

Package managers in Containers
 Setting up Python environments inside a Singularity container.

 Avoid re-downloading package. Cache persist between runs.

 Each has its advantages and trade-offs depending on your HPC workload!

Pip Installs Packages (pip)
 Pip is a lightweight way to install Python packages in container.

 Suitable for smaller environments.
 Install packages from requirements file.

 Example of installing pip within Singularity Definition file:

https://pypi.org/project/pip/

Conda
 Conda & miniconda are powerful package manager that can handle Python and system dependencies.

 Suitable for complex environments.

 Create, activate, deactivate, list environments.

 Create environment from yaml files.

 Example of installing Conda within Singularity Definition file:

https://docs.conda.io/en/latest/

Mamba
 Mamba is a reimplementation and drop-in replacement for Conda that is much faster.

 Suitable for complex environments.

 Avoid updating existing packages --freeze-installed

 Example of installing Mamba within Singularity Definition file:

https://github.com/mamba-org/mamba

Interconnectivity

 Running Singularity containers with InfiniBand, Slingshot,..

 Network is not isolated, its shared!

 resources, files, memory, …
 If InfiniBand is detected, it will show active ports.

 Use OSU MPI micro-benchmarks to verify it.

 Build Slurm with PMIX & UCX for better performance!
 srun --mpi=list

 Requires special configurations to ensure
 Low Latency & High Bandwidth

 GPUDirect RDMA Support

 Allows direct GPU-to-GPU communication

 Use --nv for GPU support (if applicable).

 Scalability (Enables multi-node, multi-GPU training.

Message Passing Interface (MPI)

 MPI is used for parallelisation in HPC environments.

 Slurm integration (UCX & PMIx).

 MPI requires direct host communication.

 CUDA-Aware MPI (MPI builded with CUDA).

 Alternatives i.e. MPICH, Intel MPI,..
 Running MPI applications inside containers can be tricky.

 Networking, process management, and GPU compatibility.
 MPI versions inside the container should match the host version!

https://shorturl.at/EVAlw

Workloads
 Gromacs (GPU + MPI)

 LAMMPS (CPU + MPI)

 QE (GPU + MPI)

 mpiBench (Hybrid MPI + OMP)

 Run it via srun and specify MPI interface, mpirun outside container, or within container!
 Debug it via logs, verbose mode, report-bindings, gdb, valgrind,..
 Profiling tools LIKWID, Score-P, TotalView, Intel VTune, Nsight Systems (nways),..

Workloads
 TensorFlow Benchmarks

 PyTorch, transformers, and dependencies with CUDA support.

Workloads
 Building the Container (Requires Root Privileges)

 Check CUDA

 Interactive work with Jupyter Notebook with GPUs

 Run it through job scheduler!

Optimal setup varies per HPC system!

Refer to the documentation, consult with support, or request assistance from the EPICURE AST!

https://wallpaperflare.com/space-black-holes-spiral-astronomy-star-space-galaxy-wallpaper-mlkzd

Workloads and Optimizations
 Use optimized pre-build Images, then build on top of them.

 Use “--bind” efficiently to mount directories without redundancy.

 Use host-pinned MPI & IB libraries for performance.

 Bind mount necessary directories for InfiniBand support.

 Leverage Slurm, PMIx, and UCX for better MPI scaling.

 Running GPU-accelerated workloads using container (Multi GPUs & nodes)

 CUDA, OpenCL, ROCm (--rocm), and NVIDIA (--nv)

 --with ‘MPI, MPICH, CUDA, NCCL, CUDA-aware MPI’

 Use SquashFS & SIF images for reduced I/O overhead.

 Enable CPU/memory affinity for HPC workloads.

 Set “--containall” or “--writable-tmpfs” to isolate workloads.

 prevent conflicts!

 Pre-cache libraries to reduce runtime loading delays.

 LD_LIBRARY_PATH


Security: Best Practices
 Security must be embedded at all levels of the software,

 proper vulnerability and patch management,

 scan images and dependencies for vulnerabilities,

 CVE vulnerabilities, misconfigurations, secrets in container images.

 use Apparmor, SeLinux, Seccomp,

 keep images updated, minimize the number of installed packages,

 use images from trusted sources, sign images,

 NVIDIA NGC, Apptainer Library, DockerHub,..

 verify the integrity of the container image, verify signatures,

 immutable Singularity Image Format (sif) prevents unauthorized modifications.

 implement access controls,

 integration with CI/CD pipelines and tools for automated vulnerability scanning.

 monitor activity on the host, auditing,

 use unprivileged user namespaces.

Trivy
A lightweight
container scanner for
Docker Singularity
containers for
vulnerabilities
and security risks.

Namespaces and Cgroups

 Namespace is a Linux kernel feature.
 Allow per each namespace mapping of UIDs and GIDs.
 Enable setting up a container without privileged operations.
 User in container can perform task without being root.
 Provide a layer and resource isolation.
 Namespaces: PID, Network, IPC, Mount, UTS, User, ..
 Cgroup limit and allocate resources.

https://opensource.com/article/21/8/container-linux-technology

”cgroups are used to manage resources, namespaces are used for isolation of processes!”

Containers at VEGA
User namespaces Network namespaces

 Cgroups (v1) enabled in Slurm (ensure the resource limitations)

 SingularityPRO is installed on the compute and login nodes

 Login nodes are suitable for container preparation as they are equipped with GPUs (4x A100).

 Rootless containers

 fakeroot feature

 assigned by request, not by default.

 Definition files of our containers are available to users.

 Embedded containers within ARC-CE RTEs.

 Template for OFED container image is available for users to build on top of it.

 Work in progress..

 Automatic container (image) deployment, security checks CI/CD,..

 images will be available in national (SLING) image registry based on CernVM-FS

Containers have come a long way!

 Highly accepted in HPC environments, and beyond!
 Keep minimal, lightweight, and maintainable image.
 Keep security checks in place!

 Keep sensitive data out of container.
 Handling many small files, use environments to reduce system stress!

 Bind-mount
 Bind data into container, rather that copied it.

 Latest publications reject the common misconceptions!

Žiga Zebec

Samo Miklavc

Alja Prah
 Dejan Lesjak

Sebastien Strban

References

 [1] EuroHPC Vega Documentation. https://doc.vega.izum.si/
 [2] Krasovec, B., Prica, T.: Secure usage of containers in the hpc environment. In:
 Nordic e-Infrastructure Tomorrow, pp. 96–112. Springer, Cham (2025)
 [3] Lesjak, D., Prah, A., Krasovec, B.: From isolation to integration: A decade of con-
 tainer technology in slovenian HPC. In: Nordic e-Infrastructure Tomorrow, pp. 142–151.

Springer, Cham (2025)
[4] Prica, T.: Development and supporting activities on EuroHPC Vega. ASHPC24 p. 14 (2024)
[5] Prah, A., Krasovec B.: Overcoming challenges in building scientific software for HPC.
ASHPC24 p. 16 (2024)

teo.prica@izum.si

	Slide 1
	Agenda
	Introduction
	Artificial Intelligence
	Software in HPC
	Dependency Hell
	Software in HPC (2)
	Container
	Container: Keywords
	Containarization in HPC
	Containarization in HPC (2)
	Slide 12
	Apptainer, formerly Singularity
	Common Workflow
	Common Workflow (2)
	Pull, Run, and Exec a Container
	Building a Singularity Container
	Slide 18
	Convert it
	Slide 20
	Package managers in Containers
	Pip Installs Packages (pip)
	Conda
	Mamba
	Interconnectivity
	Message Passing Interface (MPI)
	Workloads
	Workloads (2)
	Workloads (3)
	Optimal setup varies per HPC system!
	Workloads and Optimizations
	Security: Best Practices
	Trivy
	Namespaces and Cgroups
	Containers at VEGA
	Containers have come a long way!
	Slide 37
	References
	Slide 39

