
CUDA Deep Dive: From Fundamentals to

Advanced Techniques

Nitin Shukla
HPC Application Engineer

October 27th 2024

1
Why heterogeneous computing?

Grasping the basic elements of GPU programming

2
CUDA programming mode

Kernel launch, Thread and Memory hierarchy

3
Performance consideration

Memory management, analysis Nsight and Nvidia

4
Streams and Concurrency

Overlapping kernel execution & data transfer on Single/Multi GPU

Contents: topics explored

Parallel Computing ❘ 7

c01.indd 08/19/2014 Page 7

Latency is the time it takes for an operation to start and complete, and is commonly expressed in
microseconds. Bandwidth is the amount of data that can be processed per unit of time, commonly
expressed as megabytes/sec or gigabytes/sec. Throughput is the amount of operations that can be
processed per unit of time, commonly expressed as g! ops (which stands for billion ! oating-point
operations per second), especially in " elds of scienti" c computation that make heavy use of ! oating-
point calculations. Latency measures the time to complete an operation, while throughput measures
the number of operations processed in a given time unit.

Computer architectures can also be subdivided by their memory organization, which is generally
classi" ed into the following two types:

 ➤ Multi-node with distributed memory

 ➤ Multiprocessor with shared memory

In a multi-node system, large scale computational engines are constructed from many processors
connected by a network. Each processor has its own local memory, and processors can communi-
cate the contents of their local memory over the network. Figure 1-7 shows a typical multi-node sys-
tem with distributed memory. These systems are often referred to as clusters.

Processor

Cache Cache

Memory Memory

Interconnection Network

Memory

Cache

Processor Processor......

......

......

FIGURE 1-7

Multiprocessor architectures typically range in size from dual-processor to dozens or hundreds
of processors. These processors are either physically connected to the same memory (as shown in
Figure 1-8), or share a low-latency link (such as PCI-Express or PCIe). Although sharing memory
implies a shared address space, it does not necessarily mean there is a single physical memory. Such
multiprocessors include both single-chip systems with multiple cores, known as multicore, and com-
puters consisting of multiple chips, each of which might have a multicore design. Multicore architec-
tures have displaced single-core architectures permanently.

The term many-core is usually used to describe multicore architectures with an especially high num-
ber of cores (tens or hundreds). Recently, computer architectures have been transitioning from multi-
core to many-core.

Computer architecture drives parallelism at the core level8 ❘ CHAPTER 1 HETEROGENEOUS PARALLEL COMPUTING WITH CUDA

c01.indd 08/19/2014 Page 8

Processor Processor

Cache Cache

Bus

Cache

Processor

Shared Memory

......

......

FIGURE 1-8

GPUs represent a many-core architecture, and have virtually every type of parallelism described
previously: multithreading, MIMD, SIMD, and instruction-level parallelism. NVIDIA coined the
phrase Single Instruction, Multiple Thread (SIMT) for this type of architecture.

GPUs and CPUs do not share a common ancestor. Historically, GPUs are graphics accelerators.
Only recently have GPUs evolved to be powerful, general-purpose, fully programmable, task and
data parallel processors, ideally suited to tackle massively parallel computing problems.

GPU CORE VERSUS CPU CORE

Even though many-core and multicore are used to label GPU and CPU architec-
tures, a GPU core is quite different than a CPU core.

A CPU core, relatively heavy-weight, is designed for very complex control logic,
seeking to optimize the execution of sequential programs.

A GPU core, relatively light-weight, is optimized for data-parallel tasks with sim-
pler control logic, focusing on the throughput of parallel programs.

HETEROGENEOUS COMPUTING
In the earliest days, computers contained only central processing units (CPUs) designed to run gen-
eral programming tasks. Since the last decade, mainstream computers in the high-performance com-
puting community have been switching to include other processing elements. The most prevalent is
the GPU, originally designed to perform specialized graphics computations in parallel. Over time,
GPUs have become more powerful and more generalized, enabling them to be applied to general-
purpose parallel computing tasks with excellent performance and high power ef! ciency.

Typically, CPUs and GPUs are discrete processing components connected by the PCI-Express bus
within a single compute node. In this type of architecture, GPUs are referred to as discrete devices.

Most modern processors implement

Memory (instruction memory and data memory)

Central processing unit (control unit and arithmetic logic unit)

Input/Output interfaces

Parallel computing two core technologies

Computer architecture i.e Hardware aspect
Parallel programming i.e Software aspect

Computer architecture drives parallelism at the core level

12 ❘ CHAPTER 1 HETEROGENEOUS PARALLEL COMPUTING WITH CUDA

c01.indd 08/19/2014 Page 12

Paradigm of Heterogeneous Computing
GPU computing is not meant to replace CPU computing. Each approach has advantages for
certain kinds of programs. CPU computing is good for control-intensive tasks, and GPU computing
is good for data-parallel computation-intensive tasks. When CPUs are complemented by GPUs, it
makes for a powerful combination. The CPU is optimized for dynamic workloads marked by short
sequences of computational operations and unpredictable control ! ow; and GPUs aim at the other
end of the spectrum: workloads that are dominated by computational tasks with simple control
! ow. As shown in Figure 1-10, there are two dimensions that differentiate the scope of applications
for CPU and GPU:

 ➤ Parallelism level

 ➤ Data size

If a problem has a small data size, sophisticated control logic, and/or low-level parallelism, the CPU
is a good choice because of its ability to handle complex logic and instruction-level parallelism. If
the problem at hand instead processes a huge amount of data and exhibits massive data parallelism,
the GPU is the right choice because it has a large number of programmable cores, can support mas-
sive multi-threading, and has a larger peak bandwidth compared to the CPU.

Data size from small to large

CPU
Sequential Computing

GPU
Parallel Computing

Pa
ra

lle
lis

m
 fr

om
 lo

w
 t

o
hi

gh

Graphics

FIGURE 1-10

CPU + GPU heterogeneous parallel computing architectures evolved because the CPU and GPU
have complementary attributes that enable applications to perform best using both types of proces-
sors. Therefore, for optimal performance you may need to use both CPU and GPU for your appli-
cation, executing the sequential parts or task parallel parts on the CPU and intensive data parallel
parts on the GPU, as shown in Figure 1-11.

Fundamentals types of parallelism

• Task parallelisms: multiple independent tasks can run simultaneously,

distributing functions across multiple cores

• Data parallelisms: multiple data items can be processed

simultaneously, distributing the data across multiple cores

Heterogeneous computing

• CUDA programming: well-suited to address problems that can be

expressed as data-parallel computations

How GPUs are different than CPUs?

Heterogeneous Computing ❘ 9

c01.indd 08/19/2014 Page 9

The switch from homogeneous systems to heterogeneous systems is a milestone in the history of
high-performance computing. Homogeneous computing uses one or more processor of the same
architecture to execute an application. Heterogeneous computing instead uses a suite of processor
architectures to execute an application, applying tasks to architectures to which they are well-suited,
yielding performance improvement as a result.

Although heterogeneous systems provide signi! cant advantages compared to traditional high-
performance computing systems, effective use of such systems is currently limited by the increased
application design complexity. While parallel programming has received much recent attention, the
inclusion of heterogeneous resources adds complexity.

If you are new to parallel programming, then you can bene! t from the performance improvements
and advanced software tools now available on heterogeneous architectures. If you are already a
good parallel programmer, adapting to parallel programming on heterogeneous architectures is
straightforward.

Heterogeneous Architecture
A typical heterogeneous compute node nowadays consists of two multicore CPU sockets and two or
more many-core GPUs. A GPU is currently not a standalone platform but a co-processor to a CPU.
Therefore, GPUs must operate in conjunction with a CPU-based host through a PCI-Express bus, as
shown in Figure 1-9. That is why, in GPU computing terms, the CPU is called the host and the GPU
is called the device.

Control

Cache

DRAM DRAM

CPU GPU

PCle Bus

ALU

ALU ALU

ALU

FIGURE 1-9

A heterogeneous application consists of two parts:

 ➤ Host code

 ➤ Device code

Host code runs on CPUs and device code runs on GPUs. An application executing on a heteroge-
neous platform is typically initialized by the CPU. The CPU code is responsible for managing the
environment, code, and data for the device before loading compute-intensive tasks on the device.

With computational intensive applications, program sections often exhibit a rich amount of data
parallelism. GPUs are used to accelerate the execution of this portion of data parallelism. When a

CPU (host): minimize latency GPU(Device): maximize throughput

GPU-accelerated computing started a new era

Why Computing Perf/Watt Matters?

Traditional CPUs are
not economically feasible

2.3 PFlops 7000 homes

7.0
Megawatts

7.0
Megawatts

CPU
Optimized for
Serial Tasks

GPU Accelerator
Optimized for Many

Parallel Tasks

GPU-accelerated computing
started a new era

Why Computing Perf/Watt Matters?

Traditional CPUs are
not economically feasible

2.3 PFlops 7000 homes

7.0
Megawatts

7.0
Megawatts

CPU
Optimized for
Serial Tasks

GPU Accelerator
Optimized for Many

Parallel Tasks

GPU-accelerated computing
started a new era

Traditional CPUs are not economically feasible

Why computing perf/Watt matters?

GPU architecture

GPU architecture is built around a scalable array of SM

• CUDA cores
• Shared Memory/L1 Cache
• Register File
• Load/Store Units
• Special Function Units
• Warp Scheduler

Latency Hiding

90 ❘ CHAPTER 3 CUDA EXECUTION MODEL

c03.indd 08/19/2014 Page 90

Latency Hiding
An SM relies on thread-level parallelism to maximize utilization of its functional units. Utilization
is therefore directly linked to the number of resident warps. The number of clock cycles between
an instruction being issued and being completed is de! ned as instruction latency. Full compute
resource utilization is achieved when all warp schedulers have an eligible warp at every clock cycle.
This ensures that the latency of each instruction can be hidden by issuing other instructions in other
resident warps.

Compared with C programming on the CPU, latency hiding is particularly important in CUDA pro-
gramming. CPU cores are designed to minimize latency for one or two threads at a time, whereas
GPUs are designed to handle a large number of concurrent and lightweight threads in order to max-
imize throughput. GPU instruction latency is hidden by computation from other warps.

When considering instruction latency, instructions can be classi! ed into two basic types:

 ➤ Arithmetic instructions

 ➤ Memory instructions

Arithmetic instruction latency is the time between an arithmetic operation starting and its output
being produced. Memory instruction latency is the time between a load or store operation being issued
and the data arriving at its destination. The corresponding latencies for each case are approximately:

 ➤ 10-20 cycles for arithmetic operations

 ➤ 400-800 cycles for global memory accesses

Figure 3-15 illustrates a simple case for an execution pipeline in which warp 0 stalls. The warp
scheduler picks up other warps to execute and then executes warp 0 when it is eligible again.

Warp 3Warp 2

Warp 6 Warp 5

Time

Warp Scheduler 0

Warp Scheduler 1 Warp 1

no eligible warps to
execute

warp 0 waiting while SM still busy

Warp 0 Warp 0 Warp 4

FIGURE 3-15

You may wonder how to estimate the number of active warps required to hide latency. Little’s
Law can provide a reasonable approximation. Originally a theorem in queue theory, it can also be
applied to GPUs:

Number of Required Warps = Latency × Throughput

GPU Accelerators

GPU acceleration for data-parallel tasks

Two important features that describe GPU capability

• Number of CUDA cores
• Memory size

GPU Performance Metrics: Throughput vs. Latency

• Peak computational performance
measures in Tflops or Pflops, reflects a device's ability to perform floating-
point calculations rapidly and efficiently

• Memory bandwidth
the rate at which data can be transferred between the CPU and memory,
measured in gigabytes per second (GB/s). It directly impacts the speed of
data-intensive applications.

NVIDIA Tesla A100 with 54 Billion Transistors

Announced and released on May 14, 2020 was the Ampere-based A100 accelerator. With 7nm
technologies, the A100 has 54 billion transistors and features 19.5 teraflops of FP32 performance,
6912 CUDA cores, 40GB of graphics memory, and 1.6TB/s of graphics memory bandwidth. The
A100 80GB model announced in Nov 2020, has 2.0TB/s graphics memory bandwidth.

• With 7nm technologies

• 19.5 teraflops of FP32 performance

• 6912 CUDA cores, 40GB of graphics memory, and 1.6TB/s of graphics memory bandwidth

• The A100 80GB model announced in Nov 2020, has 2.0TB/s graphics memory bandwidth

NVIDIA Tesla A100 with 54 Billion Transistors

Announced and released on May 14, 2020 was the Ampere-based A100 accelerator. With 7nm
technologies, the A100 has 54 billion transistors and features 19.5 teraflops of FP32 performance,
6912 CUDA cores, 40GB of graphics memory, and 1.6TB/s of graphics memory bandwidth. The
A100 80GB model announced in Nov 2020, has 2.0TB/s graphics memory bandwidth.

NVIDIA Tesla A100 with 54 Billion Transistor

TOP10 System - November 2023

1. Frontier ORNL

AMD CPUs
AMD GPUs

HPE Slingshot
1679 pflops

2. Aurora ANL

Intel CPUs
Intel GPUs

HPE Slingshot
1059 pflops

3. Eagle Microsoft

Intel CPUs
Nvidia GPUs

Nvidia Inf
846 pflops

4. Fugaku RIKEN

Fujitsu ARM

Fujitsu Tofu
537 pflops

5. Lumi CSC

AMD CPUs
AMD GPUs

HPE Slingshot
531 pflops

6. Leonardo CINECA

Intel CPUs
Nvidia GPUs

Nvidia Inf
304 pflops

https://top500.org/lists/top500/2023/11/70 % of FLOP/s by GPUs, > 100 000 GPUs in Frontier+Aurora

TOP10 System - November 2023

Heterogeneous Computing ❘ 13

c01.indd 08/19/2014 Page 13

GPU

Application Code

CPU
Compute intensive portion

Sequential portion

FIGURE 1-11

Writing code this way ensures that the characteristics of the GPU and CPU complement each other,
leading to full utilization of the computational power of the combined CPU + GPU system. To sup-
port joint CPU + GPU execution of an application, NVIDIA designed a programming model called
CUDA. This new programming model is the focus for the rest of this book.

CPU THREAD VERSUS GPU THREAD

Threads on a CPU are generally heavyweight entities. The operating system must
swap threads on and off CPU execution channels to provide multithreading capa-
bility. Context switches are slow and expensive.

Threads on GPUs are extremely lightweight. In a typical system, thousands of
threads are queued up for work. If the GPU must wait on one group of threads, it
simply begins executing work on another.

CPU cores are designed to minimize latency for one or two threads at a time,
whereas GPU cores are designed to handle a large number of concurrent, light-
weight threads in order to maximize throughput.

Today, a CPU with four quad core processors can run only 16 threads concurrently,
or 32 if the CPUs support hyper-threading.

Modern NVIDIA GPUs can support up to 1,536 active threads concurrently per
multiprocessor. On GPUs with 16 multiprocessors, this leads to more than 24,000
concurrently active threads.

H
ost

D
ev

ic
e

GPUs serve as a co-processor, not a standalone platform

Applications

Libraries OpenACC/OpenMP
Directives CUDA

Drop-in Acceleration Easy Accelerations Maximum Flexibility

Increasing programming effort

Productivity PerformancePortability

Ways to parallels an applications on Nvidia GPUs

SYCL / ONEAPI
HACKATHON
@ CINECA
Empowering the Future of High-Performance
Computing with SYCL

SYCL / ONEAPI
HACKATHON
@ CINECA
Empowering the Future of High-Performance
Computing with SYCL

Register now!

https://hpc-portal.eu/node/2190

https://hpc-portal.eu/node/2190

Follow the link:
https://hpc-

portal.eu/node/2190

… or scan the QR code For further info / questions:
a.masini@cineca.it

Performance

• Massive Parallelism: scale to 1000’s of cores, 10000000’s of parallel thread

• Massive Gain: substantial performance improvements in tasks that can be divided into smaller, concurrent operations

Scalability

• Efficiently maps to the GPU architecture: well-suited for leveraging GPU capabilities

• Wide Range of Hardware: applications can scale from small embedded devices to large supercomputers

Flexibility

• Programming Languages: supports various programming languages

• Easy to use: let programmers strip away complexity associated with parallel computing and focus on parallel algorithms

Why CUDA?

Heterogeneous Computing ❘ 15

c01.indd 08/19/2014 Page 15

driver API. Each function of the runtime API is broken down into more basic operations issued to
the driver API.

CPU
Applications

CUDA Libraries

CUDA Runtime

CUDA Driver

GPU

FIGURE 1-13

RUNTIME API VERSUS DRIVER API

There is no noticeable performance difference between the runtime and driver
APIs. How your kernels use memory and how you organize your threads on the
device have a much more pronounced effect.

These two APIs are mutually exclusive. You must use one or the other, but it is not
possible to mix function calls from both. All examples throughout this book use
the runtime API.

A CUDA program consists of a mixture of the following two parts:

 ➤ The host code runs on CPU.

 ➤ The device code runs on GPU.

NVIDIA’s CUDA nvcc compiler separates the device code from the host code during the compila-
tion process. As shown in Figure 1-14, the host code is standard C code and is further compiled
with C compilers. The device code is written using CUDA C extended with keywords for labeling
data-parallel functions, called kernels. The device code is further compiled by nvcc. During the
link stage, CUDA runtime libraries are added for kernel procedure calls and explicit GPU device
manipulation.

What is CUDA?

CUDA : Compute Unified Device Architecture

• Enable heterogeneous systems (i.e., CPU+GPU)

• A new architecture instruction set called PTX (Parallel Thread eXecution)
to match GPU typical hardware

• Parallelism allows developers to use GPUs for general purpose processing
(GPGPU)

The SDK includes

• A Drivers, runtimes and API

• Compiler wrappers for complain coda code (nvcc)

• Libraries (cuBLAS, cuFFT, cuSolver) debuggers (cuda-gdb, cuda-memcheck),
profilers (nvprof, nView), etc

• CUDA-aware languages C/C++, Fortran, PyCUDA, CUDA.Jl

CUDA programmer perspective

• Heterogenous computing: combination of CPU and GPU

• Host: The CPU and its memory

• Device: The GPU and its memory

• Execution: Programs run a on the host and launch parallel code (kernels) on the device
by many threads

Programming model view

• Kernels: A function written in CUDA C/C++ and executed on the GPU

• Launch configurations:

• Threads: Smallest unit of execution in CUDA

• Block: A collection of threads

• Grid: A collection of blocks

• Memory management: Allocate and transfer data between host (CPU) and device (GPU)

CUDA programming modelCUDA execution model

CUDA enhances your control over memory and thread hierarchies, optimizing execution and scheduling with:

Thread hierarchy structure Memory hierarchy structure

Compiling and running CUDA enable application

Embarrassing parallel code

Vector Addition

• Simple operation: a memory-bound operation

• Natural Fit for GPUs: Each element of a vector are

independent

• Scalability: Larger vectors benefit from GPU or

multi-core CPU parallelism, offering faster

computation than serial processing.

 sumArraysOnHost(float *A, float *B, float *C, const int N)

 { for (int idx=0; idx<N; idx++)
 C[idx] = A[idx] + B[idx];
 }

 int main(int argc, char **argv)
 {

..

Start = cpuSecond();

sumArrayOnCPU(h_A, h_B, h_C, N);

Double cpuTime = cpuSecond() - start;

printf(“CPU Execution Time: %f second \n”, cpuTime);

..
 }

// CPU function

CUDA differentiates between these functions by using one of the following function type qualifiers as a prefix

• __global__ qualifier for kernels that can be invoked globally

• __host__ functions called from host and executed on the host

• __device__ functions called from device and execute on the device (a function that is called from a kernel needs the
__device__ qualifier)

Declaring Host-Called, Device-Executed Functions

#include <stdio.h>

__global__ void onGPU()

{
printf(“This function runs on GPU\n”);
}

int main()
{

onGPU<<<1, 1>>>();

cudaDeviceSynchronize();

}

__global__ void()

Defines a kernel
can be invoked globally either from CPU or GPU

Execution configuration

Kernel_name <<<numBlocks, numThreads>>> (arguments);
Specifies grid and block dimensions

Synchronization

Launching kernel is asynchronous
cudaDeviceSynchronize(): wait until device code completeness

Parallel kernel execution

// Kernel
__global__
 sumArraysOnDevice(float *A, float *B, float *C, const int N)
{
 int idx = threadIdx.x + (blockIdx.x * blockDim.x)
 if(idx<N)
 C[idx] = A[idx] + B[idx];

}

int main(int argc, char **argv)
{

..
start = cpuSecond();
sumArraysOnGPU<<<gridSize, blockSize>>>(d_A, d_B, d_C, N);
cudaDeviceSynchronize();
double gpuTime = cpuSecond() - start;
printf("GPU Execution Time: %f seconds\n", gpuTime);
..

}

Step to Launching a CUDA Kernel

CUDA launches arrays of parallel threads

Thread block

A block has a fixed number of threads which are guaranteed
to be running simultaneously on the same SM

Thread block

0 1 2 3 4

float x = input[threadIdx.x];

float y = fun(x);

output[threadIdx.x] = y;

A CUDA kernel is executed as a grid (array) of
threads

• All threads in a grid run the same kernel code

• Each thread has a unique ID: threadIdx

• Threads are similar to data-parallel tasks.

• Threads independently execute the same
operation on a data subset

• Follows SPMD model i.e the Single Program
Multiple Data => SIMT Single Instructions Multiple
threads

th
re
ad
Id
x.
x

For fully utilisation of the parallel processing power of the GPU

CUDA launches arrays of parallel threads

float *A, *B, *C = …. ; for (int I = 0; I <N; I++) A[I] = B[I] + C[I]

Consider how computations will be distributed between threads for the following loop (N >> threads count):

SIMD: a single sequential stream of SIMD instructions for CPU with AVX-512 support (512-bit vector registers - Xeon Phi and 2015’ CPU)

SIMT: Multiple instruction streams of scalar instructions for CUDA/GPU with 32 threads per warps: | thread is lightweight GPU-thread

SIMT allows CUDA GPU to perform “vector” computations on scalar cores, which is must easier, than getting compiler to autovectorize on CPU and
much easier than to vectorise the code manually

SIMT VS. SIMD execution model

• SIMD describes a class of instructions which perform the
same operations on multiple registers simultaneously

• Converting an algorithm to use SIMD is usually called
“Vectorizing”

• a SIMD register (or a vector register) can hold many values
(2 - 16 values or more) of a single type

• Vectorisation helps you write code which has good access
patterns to maximise bandwidth

N. Shukla, OpenMP for HPC

CINECA Bologna, Italy | July 12th 2021

Vectorisation is referred as SIMD parallelism

Vector length

+

+

do i = 1, 16
 C[i] = A[i] + B[I]
end do

Scalar instructions
32 loads
16 adds
16 stores

SIMD instructions
8 loads
4 adds
4 stores

Why vectorisation?

• Operates on entire blocks of data, called vector
• In OpenMP, vectorisation is referred to as SIMD

parallelism
• It gives you more compute per cycle
• A single instruction operates upon multiple data

elements concurrently
• Hence may increase the FLOP/s rate of the

processor
• SIMD instruction use special SIMD registers

containing multiple data elements
• Vectors help make good use of the memory

hierarchy
• Vectorisation helps you write code which has

good access patterns to maximise bandwidth

Both SIMD and SIMT achieve parallelism by broadcasting a single instruction to multiple execution units

SIMT VS. SIMD execution model

https://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html

SIMT thread registers
A loose extension of SIMD which is what CUDA’s computational model is,
although there is key differences

• Single instruction, multiple registers
• Single instructions multiple addresses

i.e. parallel memory access!
• Single instruction, multiple flow paths

if statements are allowed!

SIMT allows

• CUDA GPU to perform “vector” computations on scalar cores
• Much easier to vectorise than getting compiler to autovectorize on CPU

a[I] a[I+1] a[I+2] a[I+3]

b[I] a[I+1] b[I+2] b[I+3]

a a a a

b b b b

I I+1 I+2 I+3

… … … …

Both SIMD and SIMT achieve parallelism by broadcasting a single instruction to multiple execution units

SIMT VS. SIMD execution model

Architecture Traditional CPUs Utilized by NVIDIA GPUs

Execution Unit Multiple data lanes Multiple threads (warps)

Flexibility Low High

Branch Handling No support for divergence Supports thread divergence

Best Suited For
Homogeneous data operations

Dynamic control flow applications

Common Usage CPU computing Vector processing on GPUs

Feature SIMD SIMT

Both SIMD and SIMT achieve parallelism by broadcasting a single instruction to multiple execution units

SIMT VS. SIMD execution model

CUDA launches arrays of parallel threads

Thread block

Warp

thread 0…31 thread 32…63

Warp

thread 64…95

Warp

thread 96…127

Warp

thread 128…159

Warp

thread 160…191

Warp

Thread block

The block of threads is broken up into “warps” of 32 threads

A “warp” is the vector element of the GPU

What is warp, and why is it
important?

Introducing the CUDA Execution Model ❘ 73

c03.indd 08/19/2014 Page 73

two warps and issue one instruction from each warp to a group of 16 CUDA cores, 16 load/store units,
or 4 special function units (illustrated in Figure 3-4). The Fermi architecture, compute capability 2.x, can
simultaneously handle 48 warps per SM for a total of 1,536 threads resident in a single SM at a time.

Warp Scheduler

Instruction Dispatch Unit

Warp 8 instruction 11

Warp 2 instruction 42

Warp 14 instruction 95

tim
e

Warp 8 instruction 12

Warp 14 instruction 96

Warp 2 instruction 43

Warp Scheduler

Instruction Dispatch Unit

Warp 9 instruction 11

Warp 3 instruction 33

Warp 15 instruction 95

Warp 9 instruction 12

Warp 3 instruction 34

Warp 15 instruction 96

FIGURE 3-4

One key feature of Fermi is the 64 KB on-chip confi gurable memory, which is partitioned between
shared memory and L1 cache. For many high-performance applications, shared memory is a key
enabler for performance. Shared memory allows threads within a block to cooperate, facilitates
extensive reuse of on-chip data, and greatly reduces off-chip traffi c. CUDA provides a runtime API
that can be used to adjust the amount of shared memory and L1 cache. Modifying the on-chip mem-
ory confi guration can lead to performance improvements depending on the usage of shared memory
or cache in a given kernel. This topic will be covered in more detail in Chapters 4 and 5.

Fermi also supports concurrent kernel execution: multiple kernels launched from the same applica-
tion context executing on the same GPU at the same time. Concurrent kernel execution allows pro-
grams that execute a number of small kernels to fully utilize the GPU, as illustrated in Figure 3-5.
Fermi allows up to 16 kernels to be run on the device at the same time. Concurrent kernel execution
makes the GPU appear more like a MIMD architecture from the programmer’s perspective.

The Kepler Architecture
The Kepler GPU architecture, released in the fall of 2012, is a fast and highly effi cient, high-perfor-
mance computing architecture. Kepler features make hybrid computing even more accessible to you.
Figure 3-6 illustrates the Kepler K20X chip block diagram, containing 15 streaming multiprocessors
(SMs) and six 64-bit memory controllers. Three important innovations in the Kepler architecture
are:

 ➤ Enhanced SMs

 ➤ Dynamic Parallelism

 ➤ Hyper-Q

Hardware Multithreading

• NVIDIA SM schedules threads in warps (groups of
32 threads)

• Warp simply means a group of threads that are
scheduled together to execute the same
instructions in lockstep.

• Execution contest stays on chip

• No overhead for switching warps

• Volta SM has 4 warp schedulers, each one is
responsible for

- feeding 32 CUDA cores

- 8 load/store units

- 8 special functions unit

What is WARP?

Understanding the Nature of Warp Execution ❘ 81

c03.indd 08/19/2014 Page 81

CONTROL LOGIC

Hardware view

Warps

Execution

Multiprocessor

Logical view

Thread Block

32 threads

32 threads

32 threads

32 threads

32 threads

FIGURE 3-10

Thread blocks can be confi gured to be one-, two-, or three-dimensional. However, from the hard-
ware perspective, all threads are arranged one-dimensionally. Each thread has a unique ID in a
block. For a one-dimensional thread block, the unique thread ID is stored in the CUDA built-in
variable threadIdx.x, and threads with consecutive values for threadIdx.x are grouped into
warps. For example, a one-dimensional thread block with 128 threads will be organized into 4
warps as follows:

Warp 0: thread 0, thread 1, thread 2, ... thread 31
Warp 1: thread 32, thread 33, thread 34, ... thread 63
Warp 3: thread 64, thread 65, thread 66, ... thread 95
Warp 4: thread 96, thread 97, thread 98, ... thread 127

The logical layout of a two or three-dimensional thread block can be converted into its one-dimen-
sional physical layout by using the x dimension as the innermost dimension, the y dimension as the
second dimension, and the z dimension as the outermost. For example, given a 2D thread block,
a unique identifi er for each thread in a block can be calculated using the built-in threadIdx and
blockDim variables:

threadIdx.y * blockDim.x + threadIdx.x.

The same calculation for a 3D thread block is as follows:

threadIdx.z * blockDim.y * blockDim.x + threadIdx.y * blockDim.x + threadIdx.x

The number of warps for a thread block can be determined as follows:

WarpsPerBlock ceil
ThreadsPerBlock

warpSize
=

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

Thus, the hardware always allocates a discrete number of warps for a thread block. A warp is never
split between different thread blocks. If thread block size is not an even multiple of warp size, some
threads in the last warp are left inactive. Figure 3-11 illustrates a two-dimensional thread block with
40 threads in the x dimension and 2 threads in the y dimension. From the application perspective,
there are 80 threads laid out in a two-dimensional grid.

The hardware will allocate 3 warps for this thread block, resulting in a total of 96 hardware threads
to support 80 software threads. Note that the last half-warp is inactive. Even though these threads
are unused they still consume SM resources, such as registers.

Understanding the Nature of Warp Execution ❘ 81

c03.indd 08/19/2014 Page 81

CONTROL LOGIC

Hardware view

Warps

Execution

Multiprocessor

Logical view

Thread Block

32 threads

32 threads

32 threads

32 threads

32 threads

FIGURE 3-10

Thread blocks can be confi gured to be one-, two-, or three-dimensional. However, from the hard-
ware perspective, all threads are arranged one-dimensionally. Each thread has a unique ID in a
block. For a one-dimensional thread block, the unique thread ID is stored in the CUDA built-in
variable threadIdx.x, and threads with consecutive values for threadIdx.x are grouped into
warps. For example, a one-dimensional thread block with 128 threads will be organized into 4
warps as follows:

Warp 0: thread 0, thread 1, thread 2, ... thread 31
Warp 1: thread 32, thread 33, thread 34, ... thread 63
Warp 3: thread 64, thread 65, thread 66, ... thread 95
Warp 4: thread 96, thread 97, thread 98, ... thread 127

The logical layout of a two or three-dimensional thread block can be converted into its one-dimen-
sional physical layout by using the x dimension as the innermost dimension, the y dimension as the
second dimension, and the z dimension as the outermost. For example, given a 2D thread block,
a unique identifi er for each thread in a block can be calculated using the built-in threadIdx and
blockDim variables:

threadIdx.y * blockDim.x + threadIdx.x.

The same calculation for a 3D thread block is as follows:

threadIdx.z * blockDim.y * blockDim.x + threadIdx.y * blockDim.x + threadIdx.x

The number of warps for a thread block can be determined as follows:

WarpsPerBlock ceil
ThreadsPerBlock

warpSize
=

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

Thus, the hardware always allocates a discrete number of warps for a thread block. A warp is never
split between different thread blocks. If thread block size is not an even multiple of warp size, some
threads in the last warp are left inactive. Figure 3-11 illustrates a two-dimensional thread block with
40 threads in the x dimension and 2 threads in the y dimension. From the application perspective,
there are 80 threads laid out in a two-dimensional grid.

The hardware will allocate 3 warps for this thread block, resulting in a total of 96 hardware threads
to support 80 software threads. Note that the last half-warp is inactive. Even though these threads
are unused they still consume SM resources, such as registers.

Understanding the Nature of Warp Execution ❘ 81

c03.indd 08/19/2014 Page 81

CONTROL LOGIC

Hardware view

Warps

Execution

Multiprocessor

Logical view

Thread Block

32 threads

32 threads

32 threads

32 threads

32 threads

FIGURE 3-10

Thread blocks can be confi gured to be one-, two-, or three-dimensional. However, from the hard-
ware perspective, all threads are arranged one-dimensionally. Each thread has a unique ID in a
block. For a one-dimensional thread block, the unique thread ID is stored in the CUDA built-in
variable threadIdx.x, and threads with consecutive values for threadIdx.x are grouped into
warps. For example, a one-dimensional thread block with 128 threads will be organized into 4
warps as follows:

Warp 0: thread 0, thread 1, thread 2, ... thread 31
Warp 1: thread 32, thread 33, thread 34, ... thread 63
Warp 3: thread 64, thread 65, thread 66, ... thread 95
Warp 4: thread 96, thread 97, thread 98, ... thread 127

The logical layout of a two or three-dimensional thread block can be converted into its one-dimen-
sional physical layout by using the x dimension as the innermost dimension, the y dimension as the
second dimension, and the z dimension as the outermost. For example, given a 2D thread block,
a unique identifi er for each thread in a block can be calculated using the built-in threadIdx and
blockDim variables:

threadIdx.y * blockDim.x + threadIdx.x.

The same calculation for a 3D thread block is as follows:

threadIdx.z * blockDim.y * blockDim.x + threadIdx.y * blockDim.x + threadIdx.x

The number of warps for a thread block can be determined as follows:

WarpsPerBlock ceil
ThreadsPerBlock

warpSize
=

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

Thus, the hardware always allocates a discrete number of warps for a thread block. A warp is never
split between different thread blocks. If thread block size is not an even multiple of warp size, some
threads in the last warp are left inactive. Figure 3-11 illustrates a two-dimensional thread block with
40 threads in the x dimension and 2 threads in the y dimension. From the application perspective,
there are 80 threads laid out in a two-dimensional grid.

The hardware will allocate 3 warps for this thread block, resulting in a total of 96 hardware threads
to support 80 software threads. Note that the last half-warp is inactive. Even though these threads
are unused they still consume SM resources, such as registers.

Understanding the Nature of Warp Execution ❘ 81

c03.indd 08/19/2014 Page 81

CONTROL LOGIC

Hardware view

Warps

Execution

Multiprocessor

Logical view

Thread Block

32 threads

32 threads

32 threads

32 threads

32 threads

FIGURE 3-10

Thread blocks can be confi gured to be one-, two-, or three-dimensional. However, from the hard-
ware perspective, all threads are arranged one-dimensionally. Each thread has a unique ID in a
block. For a one-dimensional thread block, the unique thread ID is stored in the CUDA built-in
variable threadIdx.x, and threads with consecutive values for threadIdx.x are grouped into
warps. For example, a one-dimensional thread block with 128 threads will be organized into 4
warps as follows:

Warp 0: thread 0, thread 1, thread 2, ... thread 31
Warp 1: thread 32, thread 33, thread 34, ... thread 63
Warp 3: thread 64, thread 65, thread 66, ... thread 95
Warp 4: thread 96, thread 97, thread 98, ... thread 127

The logical layout of a two or three-dimensional thread block can be converted into its one-dimen-
sional physical layout by using the x dimension as the innermost dimension, the y dimension as the
second dimension, and the z dimension as the outermost. For example, given a 2D thread block,
a unique identifi er for each thread in a block can be calculated using the built-in threadIdx and
blockDim variables:

threadIdx.y * blockDim.x + threadIdx.x.

The same calculation for a 3D thread block is as follows:

threadIdx.z * blockDim.y * blockDim.x + threadIdx.y * blockDim.x + threadIdx.x

The number of warps for a thread block can be determined as follows:

WarpsPerBlock ceil
ThreadsPerBlock

warpSize
=

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

Thus, the hardware always allocates a discrete number of warps for a thread block. A warp is never
split between different thread blocks. If thread block size is not an even multiple of warp size, some
threads in the last warp are left inactive. Figure 3-11 illustrates a two-dimensional thread block with
40 threads in the x dimension and 2 threads in the y dimension. From the application perspective,
there are 80 threads laid out in a two-dimensional grid.

The hardware will allocate 3 warps for this thread block, resulting in a total of 96 hardware threads
to support 80 software threads. Note that the last half-warp is inactive. Even though these threads
are unused they still consume SM resources, such as registers.

Figure 2.13: Each thread computing the square of its own value

One limitation on blocks is that each block can hold up to 512 threads. In trivial cases where

each thread is independent of other threads (such as square array in the example above) the grid

can simply be augmented to contain more blocks. Grid dimensions are limited to 65535 x 65535 x 1

blocks. For situations where each thread is dependent of other threads such as the computation of a

dot product that exceeds 512 in length, A more sophisticated technique is required. The programmer

needs to be creative and craft a design that allow threads to be mapped to larger regions, and at the

same time not overlap the work of other threads. Taking the square array example, if the problem

deals with 1024 elements, each thread can be responsible for data at indices threadIdx and threadIdx

+ blockDim.x, where blockDim.x = 512.

Once a kernel is launched, the corresponding grid and block structure is created. The blocks

are then assigned to a SM by the SMC (see CUDA architecture). Each SM executes up to 8 blocks

concurrently. Remaining blocks are queued up until a SM is free. The SMCs are smart enough to

monitor resource usage and not assign blocks to SMs that are deficient of resources. This ensures

that all SMs are functioning to its maximum capacity. As shown in Figure 2.14[4], the more SM a

graphics card has, the more concurrent blocks can be executed. Although each block can contain

up to 512 threads, and each SM can execute up to a maximum of 8 concurrent blocks, it is not

true that at any given time a SM can execute 4096 concurrent threads. Resources are required to

maintain the thread and block IDs and its execution state. Due to hardware limitations the SM can

21

Understanding the Nature of Warp Execution ❘ 81

c03.indd 08/19/2014 Page 81

CONTROL LOGIC

Hardware view

Warps

Execution

Multiprocessor

Logical view

Thread Block

32 threads

32 threads

32 threads

32 threads

32 threads

FIGURE 3-10

Thread blocks can be confi gured to be one-, two-, or three-dimensional. However, from the hard-
ware perspective, all threads are arranged one-dimensionally. Each thread has a unique ID in a
block. For a one-dimensional thread block, the unique thread ID is stored in the CUDA built-in
variable threadIdx.x, and threads with consecutive values for threadIdx.x are grouped into
warps. For example, a one-dimensional thread block with 128 threads will be organized into 4
warps as follows:

Warp 0: thread 0, thread 1, thread 2, ... thread 31
Warp 1: thread 32, thread 33, thread 34, ... thread 63
Warp 3: thread 64, thread 65, thread 66, ... thread 95
Warp 4: thread 96, thread 97, thread 98, ... thread 127

The logical layout of a two or three-dimensional thread block can be converted into its one-dimen-
sional physical layout by using the x dimension as the innermost dimension, the y dimension as the
second dimension, and the z dimension as the outermost. For example, given a 2D thread block,
a unique identifi er for each thread in a block can be calculated using the built-in threadIdx and
blockDim variables:

threadIdx.y * blockDim.x + threadIdx.x.

The same calculation for a 3D thread block is as follows:

threadIdx.z * blockDim.y * blockDim.x + threadIdx.y * blockDim.x + threadIdx.x

The number of warps for a thread block can be determined as follows:

WarpsPerBlock ceil
ThreadsPerBlock

warpSize
=

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

Thus, the hardware always allocates a discrete number of warps for a thread block. A warp is never
split between different thread blocks. If thread block size is not an even multiple of warp size, some
threads in the last warp are left inactive. Figure 3-11 illustrates a two-dimensional thread block with
40 threads in the x dimension and 2 threads in the y dimension. From the application perspective,
there are 80 threads laid out in a two-dimensional grid.

The hardware will allocate 3 warps for this thread block, resulting in a total of 96 hardware threads
to support 80 software threads. Note that the last half-warp is inactive. Even though these threads
are unused they still consume SM resources, such as registers.

Groups (vectors) of 32 consecutive threads of a block that are executed in parallel in hardware

Understanding the Nature of Warp Execution ❘ 81

c03.indd 08/19/2014 Page 81

CONTROL LOGIC

Hardware view

Warps

Execution

Multiprocessor

Logical view

Thread Block

32 threads

32 threads

32 threads

32 threads

32 threads

FIGURE 3-10

Thread blocks can be con! gured to be one-, two-, or three-dimensional. However, from the hard-
ware perspective, all threads are arranged one-dimensionally. Each thread has a unique ID in a
block. For a one-dimensional thread block, the unique thread ID is stored in the CUDA built-in
variable threadIdx.x, and threads with consecutive values for threadIdx.x are grouped into
warps. For example, a one-dimensional thread block with 128 threads will be organized into 4
warps as follows:

Warp 0: thread 0, thread 1, thread 2, ... thread 31
Warp 1: thread 32, thread 33, thread 34, ... thread 63
Warp 3: thread 64, thread 65, thread 66, ... thread 95
Warp 4: thread 96, thread 97, thread 98, ... thread 127

The logical layout of a two or three-dimensional thread block can be converted into its one-dimen-
sional physical layout by using the x dimension as the innermost dimension, the y dimension as the
second dimension, and the z dimension as the outermost. For example, given a 2D thread block,
a unique identi! er for each thread in a block can be calculated using the built-in threadIdx and
blockDim variables:

threadIdx.y * blockDim.x + threadIdx.x.

The same calculation for a 3D thread block is as follows:

threadIdx.z * blockDim.y * blockDim.x + threadIdx.y * blockDim.x + threadIdx.x

The number of warps for a thread block can be determined as follows:

WarpsPerBlock ceil
ThreadsPerBlock

warpSize
=











Thus, the hardware always allocates a discrete number of warps for a thread block. A warp is never
split between different thread blocks. If thread block size is not an even multiple of warp size, some
threads in the last warp are left inactive. Figure 3-11 illustrates a two-dimensional thread block with
40 threads in the x dimension and 2 threads in the y dimension. From the application perspective,
there are 80 threads laid out in a two-dimensional grid.

The hardware will allocate 3 warps for this thread block, resulting in a total of 96 hardware threads
to support 80 software threads. Note that the last half-warp is inactive. Even though these threads
are unused they still consume SM resources, such as registers.

• An implementation technique, not part of the CUDA
programming model

• basic unit of execution in an SM

Warps as Scheduling Units

Latency hiding

• Memory Access Latency: Multiple warps can hide memory access latency by switching to another ready warp when one warp is waiting for data

• Instruction Pipeline Latency: Keeps the execution units busy while other warps are stalled due to dependencies or resource constraints

Resource Utilisation

• Maximizing Throughput: More warps allow for better utilization of SM resources (ALUs, memory bandwidth)

• Load Balancing: Distributes the workload evenly across the available execution units

Parallelism

• Enhancing Parallel execution: Multiple warps increase the parallelism, enabling more threads to be processed concurrently

• Improved Performance: Higher parallelism leads to better performance and throughput for data-intensive applications

Why do we need to have so many warps in an SM?Why do we need to have so many warps in an SM?

GPU Thread hierarchy

GPU Thread hierarchy

….

Multi-processors: tens of thousands

GPU consists of Hundreds of thousands of grids

…. ….

1024/32 = 32 warps

thread 0…31

Block 1024 threads

Warp Warp Warp

Warp

GPU Thread hierarchy

Grid

Block 0

Block 0

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

Block 2

• In order to compute N elements on the GPU
in parallel, at least N concurrent threads must
be created on the device

• GPU threads are grouped together in teams
or blocks of threads

• Threads belonging to the same block or team
can cooperate togheter exchanging data
through a shared memory cache area

• Each block of threads will be executed
independently

• No assumption is made on the blocks
execution order

(Thread ∈ Block ∈ Grid)

CUDA- provided variables describe its executing thread, block, and grid

Block 1

Kernel execution across Thread, Block, and Grid

gridDim.x: number of blocks in the grid, in this case 2

GPU
performWork<<<2,4>>>()

2

CUDA- provided variables describe its executing thread, block, and grid
Kernel execution across Thread, Block, and Grid

gridDim.x: number of blocks in the grid, in this case 2

GPU
performWork<<<2,4>>>()

2

CUDA- provided variables describe its executing thread, block, and grid

blockIdx.x: index of a blocks in a grid

GPU
performWork<<<2,4>>>()

blockDim.x: number of threads per block

blockDim.x = 4

blockIdx.x = 0 blockIdx.x = 1

CUDA- provided variables describe its executing thread, block, and grid
Kernel execution across Thread, Block, and Grid

threadIdx.x: index of the thread with a block

GPU
performWork<<<2,4>>>()

0 1 2 3 0 1 2 3

CUDA- provided variables describe its executing thread, block, and grid
Kernel execution across Thread, Block, and Grid

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

CUDA- provided variables describe its executing thread, block, and grid

for blockIdx.x = 0
i = 0 * 8 + threadIdx.x = { 0, 1, 2, ... , 7 }

for blockIdx.x = 3
i = 0 * 8 + threadIdx.x = { 0, 1, 2, ... , 7 }

Choose the optimal block size

• A limited number of threads (1024) can fit inside a thread block

• To increase parallelism, we need to coordinate work among thread blocks.

• This is achieved by mapping element of data vector to threads using global index = threadIdx.x + blockIdx.x*blockDim.x

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

CUDA- provided variables describe its executing thread, block, and grid

for blockIdx.x = 0
i = 0 * 8 + threadIdx.x = { 0, 1, 2, ... , 7 }

for blockIdx.x = 3
i = 0 * 8 + threadIdx.x = { 0, 1, 2, ... , 7 }

Choose the optimal block size

• A limited number of threads (1024) can fit inside a thread block

• To increase parallelism, we need to coordinate work among thread blocks.

• This is achieved by mapping element of data vector to threads using global index = threadIdx.x + blockIdx.x*blockDim.x

Kernel execution across Thread, Block, and Grid

Introducing the CUDA Programming Model ❘ 37

c02.indd 08/19/2014 Page 37

threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

threadIdx.x threadIdx.x threadIdx.x

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

FIGURE 2-6

Because the data is stored linearly in global memory, you can use the built-in variables blockIdx.x
and threadIdx.x to:

 ➤ Identify a unique thread in the grid.

 ➤ Establish a mapping between threads and data elements.

If you group all 32 elements into one block, then you just have one block as follows:

kernel_name<<<1, 32>>>(argument list);

If you let each block just have one element, you have 32 blocks as follows:

kernel_name<<<32, 1>>>(argument list);

A kernel call is asynchronous with respect to the host thread. After a kernel is invoked, control
returns to the host side immediately. You can call the following function to force the host
application to wait for all kernels to complete.

cudaError_t cudaDeviceSynchronize(void);

Some CUDA runtime APIs perform an implicit synchronization between the host and the device.
When you use cudaMemcpy to copy data between the host and device, implicit synchronization at
the host side is performed and the host application must wait for the data copy to complete.

cudaError_t cudaMemcpy(void* dst, const void* src, size_t count, cudaMemcpyKind kind);

It starts to copy after all previous kernel calls have completed. When the copy is ! nished, control
returns to the host side immediately.

ASYNCHRONOUS BEHAVIORS

Unlike a C function call, all CUDA kernel launches are asynchronous. Control
returns to the CPU immediately after the CUDA kernel is invoked.

Writing Your Kernel
A kernel function is the code to be executed on the device side. In a kernel function, you de! ne the
computation for a single thread, and the data access for that thread. When the kernel is called, many
different CUDA threads perform the same computation in parallel. A kernel is de! ned using the
__global__ declaration speci! cation as shown:

__global__ void kernel_name(argument list);

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

CUDA- provided variables describe its executing thread, block, and grid

for blockIdx.x = 0
i = 0 * 8 + threadIdx.x = { 0, 1, 2, ... , 7 }

for blockIdx.x = 3
i = 0 * 8 + threadIdx.x = { 0, 1, 2, ... , 7 }

Choose the optimal block size

• A limited number of threads (1024) can fit inside a thread block

• To increase parallelism, we need to coordinate work among thread blocks.

• This is achieved by mapping element of data vector to threads using global index = threadIdx.x + blockIdx.x*blockDim.x

4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

0 1

4 4

Code must check that the dataIndex
calculated by threadIdx.x +

blockIdx.x * blockDim.x is less
than N, the number of data elements.

Grid size larger than data setGrid size larger than data set

Choose the optimal block size

• Write an execution configuration that creates more threads than
necessary

• Pass a value as an argument into the kernel (N) that represents that
total size if the data set to be processed/total threads needed to
complete the work

• Calculate the global index and if it does not exceed N perform the
kernel work

Know your limitations

Maximum size at each level of the thread hierarchy is device dependent.
On A100 typical you get :
• Maximum number of threads per block : 1024
• Maximum sizes of x-, y-, and -z dimensions of threads block 1024 x

1024 x 64
• Maximum sizes of each dimension of grid of thread blocks: 65535 x

65535 x 65535 (about 280,000 billion blocks)

// Coalesced access example

__global__ vectorSum(int N)

int idx = threadIdx.x + blockIdx.x * blockDim.x;

{

 if(idx < N){ // only do work if it does}

}

44 ❘ CHAPTER 2 CUDA PROGRAMMING MODEL

c02.indd 08/19/2014 Page 44

Timing with CPU Timer
A CPU timer can be created by using the gettimeofday system call to get the system’s wall-clock
time, which returns the number of seconds since the epoch. You need to include the sys/time.h
header ! le, as shown in Listing 2-5.

double cpuSecond() {
 struct timeval tp;
 gettimeofday(&tp,NULL);
 return ((double)tp.tv_sec + (double)tp.tv_usec*1.e-6);
}

You can measure your kernel with cpuSecond in the following way:

double iStart = cpuSecond();
kernel_name<<<grid, block>>>(argument list);
cudaDeviceSynchronize();
double iElaps = cpuSecond() - iStart;

Because a kernel call is asynchronous with respect to the host, you need to use
cudaDeviceSynchronize to wait for all GPU threads to complete. The variable iElaps reports the
time spent as if you had measured kernel execution with your wristwatch (in seconds).

Now test a big vector with 16M elements by setting the size of the data set as follows:

int nElem = 1<<24;

You need to modify the kernel for GPU scalability by calculating a row-major array index i using
the block and thread indices, and by adding a test (i < N) that checks for those indices that may
exceed array bounds, as follows:

__global__ void sumArraysOnGPU(float *A, float *B, float *C, const int N) {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i < N) C[i] = A[i] + B[i];
}

With these changes, you are ready to measure the kernel using different execution con! gurations. To
handle the case where the total number of threads created is larger than the total number of vector
elements, you need to restrict your kernel from illegal global memory access, as shown in Figure 2-7.

Block 0 Block 1

A grid with 4 blocks

total vector elements < total threads

Block 2 Block 3

FIGURE 2-7

Listing 2-5 shows you how to measure the vector addition kernel with the CPU timer in the main
function.

Choosing the optimal grid size

Every thread runs exactly the same program

Thread block

A limited number of threads (1024) can fit inside a thread block

To increase parallelism, we need to coordinate work among thread blocks

All about this one line code

This is achieved by mapping element of data vector to threads using global index

int index = threadIdx.x + (blockIdx.x * blockDim.x)

Thread block

Transparent scalability

Block 6 Block 7

Block 4 Block 5

Block 2 Block 3

Device

Block 0 Block 1

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6

Each block can execute
in any order relative to

other blocks

Block 7

T
im

e

GPU with 2 SM

GPU with 4 SM

User workload of 8 Blocks

Mapping to hardware

Execute concurrently2

Each SM runs multiple thread blocks

Each SP runs on thread from a thread blocks

CUDA invokes kernel grid1

Host kicks off the execution of a kernel grid which
contains blocks of threads

Grid blocks distributed to SMs3

Shared cache, register and memory

Global memory shared by all SMs

70 ❘ CHAPTER 3 CUDA EXECUTION MODEL

c03.indd 08/19/2014 Page 70

A MAGIC NUMBER: 32

The number 32 is a magic number in CUDA programming. It comes from hard-
ware, and has a signi! cant impact on the performance of software.

Conceptually, you can think of it as the granularity of work processed simultane-
ously in SIMD fashion by an SM. Optimizing your workloads to ! t within the
boundaries of a warp (group of 32 threads) will generally lead to more ef! cient
utilization of GPU compute resources. You will learn much more about this issue in
subsequent chapters.

A thread block is scheduled on only one SM. Once a thread block is scheduled on an SM, it remains
there until execution completes. An SM can hold more than one thread block at the same time.
Figure 3-2 illustrates the corresponding components from the logical view and hardware view of
CUDA programming.

Software

Thread

Thread Block

Grid

Hardware

CUDA Core

SM

Device

FIGURE 3-2

Shared memory and registers are precious resources in an SM. Shared memory is partitioned
among thread blocks resident on the SM and registers are partitioned among threads. Threads
in a thread block can cooperate and communicate with each other through these resources.
While all threads in a thread block run logically in parallel, not all threads can execute

70 ❘ CHAPTER 3 CUDA EXECUTION MODEL

c03.indd 08/19/2014 Page 70

A MAGIC NUMBER: 32

The number 32 is a magic number in CUDA programming. It comes from hard-
ware, and has a signi! cant impact on the performance of software.

Conceptually, you can think of it as the granularity of work processed simultane-
ously in SIMD fashion by an SM. Optimizing your workloads to ! t within the
boundaries of a warp (group of 32 threads) will generally lead to more ef! cient
utilization of GPU compute resources. You will learn much more about this issue in
subsequent chapters.

A thread block is scheduled on only one SM. Once a thread block is scheduled on an SM, it remains
there until execution completes. An SM can hold more than one thread block at the same time.
Figure 3-2 illustrates the corresponding components from the logical view and hardware view of
CUDA programming.

Software

Thread

Thread Block

Grid

Hardware

CUDA Core

SM

Device

FIGURE 3-2

Shared memory and registers are precious resources in an SM. Shared memory is partitioned
among thread blocks resident on the SM and registers are partitioned among threads. Threads
in a thread block can cooperate and communicate with each other through these resources.
While all threads in a thread block run logically in parallel, not all threads can execute

CUDA enhances your control over memory and thread hierarchies, optimizing execution and scheduling with:

Thread hierarchy structure Memory hierarchy structure

Compiling and running CUDA enable application

Three simple processing steps

6

SIMPLE PROCESSING FLOW

1. Copy input data from CPU memory to GPU
memory

PCIe or NVLink Bus

Three simple processing steps

1 Copy input data from CPU memory to GPU

7

SIMPLE PROCESSING FLOW

1. Copy input data from CPU memory to GPU
memory

2. Load GPU program and execute,
caching data on chip for performance

PCIe or NVLink Bus

Three simple processing steps

Copy input data from CPU memory to GPU

Three simple processing steps

1

2 Load GPU program and execute caching data on
chip for performance

8

SIMPLE PROCESSING FLOW

PCIe or NVLink Bus

1. Copy input data from CPU memory to GPU
memory

2. Load GPU program and execute,
caching data on chip for performance

3. Copy results from GPU memory to CPU
memory

Three simple processing steps

Copy input data from CPU memory to GPU

Three simple processing steps

1

2 Load GPU program and execute caching data on
chip for performance

3 Copy results From GPU to CPU memory

Copy host to Device

Data movement

1

2 Copy Device to host

3 Clean up memory for host and device

// Copy data from host to device

checkCuda(cudaMemcpy(d_A, h_A, size,
cudaMemcpyHostToDevice));
checkCuda(cudaMemcpy(d_B, h_B, size,
cudaMemcpyHostToDevice));

// Copy result from device to host

checkCuda(cudaMemcpy(h_C_ref, d_C, size,
cudaMemcpyDeviceToHost));

// Clean up memory

 checkCuda(cudaFree(d_A));
checkCuda(cudaFree(d_B));
checkCuda(cudaFree(d_C));
cleanup(h_A, h_B, h_C, h_C_ref);

How to compile CUDA enable application?1

NVHPC Compiler: translate CUDA into optimised machine
instructions for NVIDIA GPUs

Libraries: Comprehensive libraries like cuBLAS and cuDNN
are provided

Debugging tools: robust debugging tools

16 ❘ CHAPTER 1 HETEROGENEOUS PARALLEL COMPUTING WITH CUDA

c01.indd 08/19/2014 Page 16

CUDA Libraries

CUDA Compiler

CPU Host Code

C Compiler

CPU

CUDA Assembly
for Computing (PTX)

CUDA Driver
& Runtime

Debugger
Profiler

GPU

Integrated CPU+GPU Code

FIGURE 1-14

The CUDA nvcc compiler is based on the widely used LLVM open source compiler infrastructure.
You can create or extend programming languages with support for GPU acceleration using the
CUDA Compiler SDK, as shown in Figure 1-15.

CUDA
C, C++, Fortran

New Language
Support

LLVM Compiler
For CUDA

NVIDIA
GPUs

New Processor
Support

×86
CPUs

FIGURE 1-15

The CUDA platform is also a foundation that supports a diverse parallel computing ecosystem, as
shown in Figure 1-16. Today, the CUDA ecosystem is growing rapidly as more and more companies
provide world-class tools, services, and solutions. If you want to build your applications on GPUs,
the easiest way to harness the performance of GPUs is with the CUDA Toolkit (https://
developer.nvidia.com/cuda-toolkit), which provides a comprehensive development environ-
ment for C and C++ developers. The CUDA Toolkit includes a compiler, math libraries, and tools
for debugging and optimizing the performance of your applications. You will also fi nd code samples,
programming guides, user manuals, API references, and other documentation to help you get started.

CUDA components

CUDA Driver1

A critical piece of software that acts as the interface
between your application and the NVIDIA GPU
hardware

The CUDA Toolkit2

H
O

ST CO
D

E

D
evice CO

D
E

CUDA components

Compilation process1

Code for host and device in some.cu file

CUDA compiler separates source code into host and
device components

Based LLVM open source compiler infrastructure

nvcc -arch=sm_70 -o out some-CUDA.cu -run2

- arch: indicates for which architecture the files must
be compiled (sm_80 is for TESLA A100 GPU)

- run: execute the successfully compiled binary

- Information on CUDA device: nvidia-smi, deviceQuery

NVIDIA C compiler (NVCC)

Heterogeneous computing platform

Host C-preprocessor
compilers linker

Device JIT compiler

CUDA C program

Measuring performance and Error handling2

// Validate results

bool validateResults(float *hostRef, float *gpuRef, int nElem) {

bool correct = true;

for (int i = 0; i < nElem; i++) {

if (fabs(hostRef[i] - gpuRef[i]) > 1e-5) {

correct = false;

printf("Mismatch at index %d: CPU = %f, GPU = %f\n", i, hostRef[i], gpuRef[I]);

break;

}

}

if (correct) {

printf("Results match!\n”);

}

return correct;

}

Validate GPU results by comparing with CPU results

Kernel Launch Errors

• Error handling in accelerated CUDA code is essential.
• All CUDA API returns an error code of type cudaError_t
‣ Special value cudaSuccess means that no error occurred

• An error message can be printed with cudaGetErrorString

cudaError_t err;
err = cudaMallocManaged(&a, N);
if(err != cudaSuccess) { printf(“Error: %s \n”, cudaGetErrorString(err)); }

• To check for errors occurring at the time of kernel launch, CUDA provides the cudaGetLastError function, which does
return a value of type cudaError_t

someKernel <<<1, -1 >>>(); // - 1 is not a valid number of threads
cudaError_t err;
err = cudaGetLastError();
if(err != cudaSuccess) { printf(“Error: %s \n”, cudaGetErrorString(err));}

Kernel Launch Errors

CUDA Error Handling Function

• A macro that wraps CUDA function calls for checking errors could be useful
• Can be wrapped around any function that returns a cudaError_t

#include <stdio.h>
#include <assert.h>

inline cudaError_t checkCuda(cudaError_t result) {
 if (result != cudaSuccess) {
 fprintf(stderr, "CUDA Runtime Error: %s\n", cudaGetErrorString(result));
 assert(result == cudaSuccess); }
 return result; }

int main() {
/* The macro can be wrapped around any function returning
* a value of type `cudaError_t`.
*/
checkCuda(cudaDeviceSynchronize())
}

CUDA Error Handling Function

Asynchronous errors

To catch errors that occur in asynchronous part of the code (for example during the execution of an asynchronous
kernel), check the status returned by a subsequent synchronizing CUDA runtime API call, such as
cudaDeviceSynchronize.

cudaError_t asynchErr;
asynchErr = cudaDeviceSynchronize(); if (asynchErr != cudaSuccess)
{

 printf("Error: %s\n", cudaGetErrorString(err));
 }

Asynchronous errors

double cpuSecond() {
 struct timespec ts;
 timespec_get(&ts, TIME_UTC);
 return ((double)ts.tv_sec + (double)ts.tv_nsec * 1.e-9);
}

/* Measure time for CPU execution */
double start = cpuSecond();
sumArraysOnCPU(h_A, h_B, hostRef, nElem);
double cpuTime = cpuSecond() - start;
printf("CPU Execution Time: %f seconds\n", cpuTime);

/* Measure time for GPU execution
double start = cpuSecond();
sumArraysOnGPU<<<gridSize, blockSize>>>(d_A, d_B, d_C, nElem);
checkCuda(cudaDeviceSynchronize()); // Ensure GPU kernel finishes
double gpuTime = cpuSecond() - start;
printf("GPU Execution Time: %f seconds\n", gpuTime);

48 ❘ CHAPTER 2 CUDA PROGRAMMING MODEL

c02.indd 08/19/2014 Page 48

==17770== Profiling application: ./sumArraysOnGPU-timer
==17770== Profiling result:
Time(%) Time Calls Avg Min Max Name
 70.35% 52.667ms 3 17.556ms 17.415ms 17.800ms [CUDA memcpy HtoD]
 25.77% 19.291ms 1 19.291ms 19.291ms 19.291ms [CUDA memcpy DtoH]
 3.88% 2.9024ms 1 2.9024ms 2.9024ms 2.9024ms sumArraysOnGPU
(float*, float*, int)

The ! rst half of the message contains output from the program, and the second half contains out-
put from nvprof. Note that the CPU timer reported the elapsed kernel time as 3.26 milliseconds,
and nvprof reported the elapsed kernel time as 2.90 milliseconds. For this case, the nvprof result
is more accurate than the host-side timing result, because the time measured with the CPU timer
included overhead from nvprof.

nvprof is a powerful tool to help you understand where time is being spent in your application.
Notice that in this example, data transfer between the host and device takes more time than the
kernel execution. A timeline view, as depicted in Figure 2-8 (not drawn to scale), shows time spent
in CPU, time spent in data transfer, and time spent computing on the GPU.

CPU

GPU

time

2.9 ms

17.8 ms 19.3 mscudaMemcpy

FIGURE 2-8

For HPC workloads, it is important to understand the compute to communication ratio in a
program. If your application spends more time computing than transferring data, then it may be
possible to overlap these operations and completely hide the latency associated with transferring
data. If your application spends less time computing than transferring data, it is important to
minimize the transfer between the host and device. In Chapter 6, you will learn how to overlap
computation with communication using CUDA streams and events.

COMPARING APP PERFORMANCE TO MAXIMIZE THEORETICAL LIMITS

While performing application optimization, it is important to determine how your
application compares to theoretical limits. Counters collected from nvprof can
help you derive instruction and memory throughput for your application. If you
compare application measured values to theoretical peak values, you can determine
if your application is limited by arithmetic or by memory bandwidth. Theoretical
ratios can be derived as follows using Tesla K10 as an example:

 ➤ Tesla K10 Peak Single Precision FLOPS:

745 MHz core clock * 2 GPUs/board * (8 multiprocessors * 192 fp32 cores/
multiprocessor) * 2 ops/cycle = 4.58 TFLOPS

Timing your kernel

Measuring performance with events

An event in CUDA is essentially a GPU time stamp that is recorded at a user-specified point in time. The API calls that
create and destroy events, record events and convert timestamp difference into a floating-point value in milliseconds

cudaEvent_t start, stop;
float time;
cudaEventCreate(&start);
cudaEventRecord(&stop);
cudaEventRecord(start, 0);
kernel<<<grid, threads>>> (d_odata, d_idata, size_x, size_y, NUM_REPS);

// do some work on the GPU
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);

cudaEventElapsedTime(&time, start, stop);
cudaEventDestroy(start);
cudaEventDestroy(stop);

How to time code using CUDA events

Measuring performance with events

Time your kernels

N Elapsed Time on Host Kernel Configuration Elapsed Time on Device Speed up [Second]

1 <<20 0.000757 (4096, 256) 0.000206 3.67

1 << 24 0.00013451 (4096, 256) 0.000447 30.12

1 << 26 0.052383 (524288, 128) 0.001013 51.72

1 << 29 0.424363 (524288, 128) 0.008173 51.92

Are there hardware constraints on threads per block and blocks per grid?3

When the data set is larger than grid size?
• In this scenario, each thread

should work on more elements.

• Work can be assigned
programmatically with a grid-
stride loop.

Data set larger than grid size: grid-stride loop
• In this scenario, each threads

should work on more elements.

• Work can be assigned
programmatically with a grid-
stride loop:
• the first element to be assigned

to a thread is calculated via
the global index,

• the next one is obtained by
summing the number of
threads in the grid

stride = blockDim.x * gridDim.x

Data set larger than grid size: grid-stride loop
• In this scenario, each threads

should work on more elements.

• Work can be assigned
programmatically with a grid-
stride loop:
• the first element to be assigned

to a thread is calculated via
the global index,

• the next one is obtained by
summing the number of
threads in the grid

stride = blockDim.x * gridDim.x

Data set larger than grid size: grid-stride loop

Advantages of Grid-stride loops

• Scalability: handles any size of input data regardless of hardware
contains. It ensures all the data is processed

• Efficient resource utilisations: It allows the kernels to utilise all
available threads efficiently by feeding more jobs

• Simplicity: straight forward implementation, without needing any
complex logic to manage the devision of the work

// Coalesced access example

__global__ vectorSum(int N)

int idx = threadIdx.x + blockIdx.x * blockDim.x;

int gridStride = gridDim.x * blockDim.x;

{

 if(idx < N){ // only do work if it does}

}

Ways to improve your code

Types of Data transfer

Pageable and Pinned memory
Unified memory and Asynchronous Prefetching

Global memory reads/writes

Aligned and coalesced memory accesses that reduce wasted
bandwidth
Array of Structure versus Structure of Array
Overlapping Kernel and Data movement by using non-default
streams

Performance tuning

Parallelising higher dimensions-2D
Unrolling techniques
Matrix Transpose Problem
Shared memory

5%
10%

10%

75%

Register Spiling

CPU-GPU

Coalesing

Cache Effi

Data transfer impacts on performance

Important to minimise the transfer between the host and device

Measuring performance with events

Application Performance constraints

Algorithm 3
compute
bound

Algorithm 2
memory/
compute
bound

Algorithm 1
memory
boundA

tt
ai

na
b

le
 p

er
fo

rm
an

ce
 (G

fl
op

s/
s)

Operational Intensity (flops/byte)

Compute BoundMemory Bound

computing ceiling

Ba
nd

w
id

th
 c

ei
lin

g

Pe
ak

 m
em

or
y

ba
nd

w
id

th

Peak computing
performance

Roofline Model

• Key Concept: Computational Intensity:

◦ Defined as FLOP (floating-point operations) per byte of
memory transferred

• Latency Hiding:

◦ Utilizing multiple warps on a Streaming Multiprocessor
(SM) enables concurrent computation.

◦ While some warps wait for memory transfers, others can
continue executing

• Combined Performance:

◦ The model illustrates how computation and memory
transfer can overlap, represented as:
▪ Performance = max(compute, memory transfer)

PCI Expreses

8 GB/sec

Host Compute
~670 GFLOPs (Ivy Bridge EX)

Host Memory
32 GB DDR3

42 GB/sec

GPU Compute
~ 4 TFLOPS (NVIDIA Tesla K40)

GPU memory
12 GB GDDR5

288 GB/sec

Impact of data transfer on overall application performance

GPU vs. CPU: Understanding Performance Trade-offs

1
Registers

Fastest, smallest memory

2
L1 Cache

Fast, small, on-chip

3
Shared Memory

Medium speed, shared among threads

4
Global Memory

Slowest, largest, off-chip

Understanding CUDA Memory Hierarchy

138 ❘ CHAPTER 4 GLOBAL MEMORY

c04.indd 08/19/2014 Page 138

lifetime of the thread block. All threads can access global memory. There are also two read-only
memory spaces accessible by all threads: the constant and texture memory spaces. The global, con-
stant, and texture memory spaces are optimized for different uses. Texture memory offers different
address modes and fi ltering for various data layouts. The contents of global, constant, and texture
memory have the same lifetime as an application.

(Device) Grid

Block (0, 0)

Shared Memory

Registers

Thread (0, 0)

Local
Memory

Local
Memory

Local
Memory

Global
Memory

Constant
Memory

Texture
Memory

Host

Thread (1, 0) Thread (2, 0)

Registers Registers

FIGURE 4-2

Registers
Registers are the fastest memory space on a GPU. An automatic variable declared in a kernel with-
out any other type qualifi ers is generally stored in a register. Arrays declared in a kernel may also be
stored in registers, but only if the indices used to reference the array are constant and can be deter-
mined at compile time.

Register variables are private to each thread. A kernel typically uses registers to hold frequently
accessed thread-private variables. Register variables share their lifetime with the kernel. Once a ker-
nel completes execution, a register variable cannot be accessed again.

Registers are scarce resources that are partitioned among active warps in an SM. On Fermi GPUs,
there is a hardware limit of 63 registers per thread. Kepler expands this limit to 255 registers per

Device code can

- R/W per-thread registers

- R/W per-thread Local Memory

- R/W per-block Shared Memory

- R/W per-grid global Memory

- Read only per-grid Constant Memory

- Read only per-grid Texture Memory

Host code can

- Transfer data to/from per-grid global and constant memories

GPU memory breakdown

142 ❘ CHAPTER 4 GLOBAL MEMORY

c04.indd 08/19/2014 Page 142

must be a multiple of 32 bytes, 64 bytes, or 128 bytes. Optimizing memory transactions are vital to
obtaining optimal performance. When a warp performs a memory load/store, the number of trans-
actions required to satisfy that request typically depends on the following two factors:

 ➤ Distribution of memory addresses across the threads of that warp.
 ➤ Alignment of memory addresses per transaction.

In general, the more transactions necessary to satisfy a memory request, the higher the potential for
unused bytes to be transferred, causing a reduction in throughput effi ciency.

For a given warp memory request, the number of transactions and the throughput effi ciency are
determined by the compute capability of the device. For devices of compute capability 1.0 and 1.1,
the requirements on global memory access are very strict. For devices with compute capabilities
beyond 1.1, the requirements are more relaxed because memory transactions are cached. Cached
memory transactions exploit data locality to improve throughput effi ciency.

The following sections will examine how to optimize global memory accesses and how to maximize
global memory throughput effi ciency.

GPU Caches
Like CPU caches, GPU caches are non-programmable memory. There are four types of cache in
GPU devices:

 ➤ L1
 ➤ L2
 ➤ Read-only constant
 ➤ Read-only texture

There is one L1 cache per-SM and one L2 cache shared by all SMs. Both L1 and L2 caches are used to
store data in local and global memory, including register spills. On Fermi GPus and Kepler K40 or later
GPUs, CUDA allows you to confi gure whether reads are cached in both L1 and L2, or only in L2.

On the CPU, both memory loads and stores can be cached. However, on the GPU only memory load
operations can be cached; memory store operations cannot be cached.

Each SM also has a read-only constant cache and read-only texture cache that are used to improve
read performance from their respective memory spaces in device memory.

CUDA Variable Declaration Summary
Table 4-1 summarizes CUDA variable declarations and their corresponding memory location, scope,
lifespan, and qualifi er.

TABLE 4-1: CUDA Variable and Type Qualifi er

QUALIFIER VARIABLE NAME MEMORY SCOPE LIFESPAN

float var Register Thread Thread

float
var[100]

Local Thread Thread

Introducing the CUDA Memory Model ❘ 143

c04.indd 08/19/2014 Page 143

QUALIFIER VARIABLE NAME MEMORY SCOPE LIFESPAN

__shared__ float var † Shared Block Block

__device__ float var † Global Global Application

__constant__ float var † Constant Global Application

† Can be either scalar variable or array variable

The principal traits of the various memory types are summarized in Table 4-2.

TABLE 4-2: Salient Features of Device Memory

MEMORY ON/OFF CHIP CACHED ACCESS SCOPE LIFETIME

Register On n/a R/W 1 thread Thread

Local Off † R/W 1 thread Thread

Shared On n/a R/W All threads in block Block

Global Off † R/W All threads + host Host allocation

Constant Off Yes R All threads + host Host allocation

Texture Off Yes R All threads + host Host allocation

† Cached only on devices of compute capability 2.x

Static Global Memory
The following code illustrates how to statically declare a global variable. As shown in Listing 4-1, a
global variable of type float is declared with fi le scope. In the kernel function checkGlobal-Vari-
able, the value of that global variable is printed and then its value is changed. In function main, the
value of that global variable is initialized using the function cudaMemcpyToSymbol. After check-
GlobalVariable is executed, the value of the global variable is altered. Its new value is then copied
back to the host using cudaMemcpyFromSymbol.

LISTING 4-1: Static declared global variable (globalVariable.cu)

#include <cuda_runtime.h>
#include <stdio.h>

__device__ float devData;

__global__ void checkGlobalVariable() {
 // display the original value
 printf("Device: the value of the global variable is %f\n",devData);

continues

CUDA Variable Declaration Summary

1. Memory allocation
Process of reserving memory space for a variable or data structure Memory
allocation can be performed using different memory types, such as global, shared and constant
memory

CUDA memory management

Process of copying data from one memory location to another
Memory copy can be performed using different memory types, such as host
memory and device memory

Process of coordinating the access of multiple threads to shared
memory or global memory
Synchronization primitives: atomic operations, barriers, and locks

2. Memory transfer

3. Memory synchronization

Pageable data transfer is default method

Pageable
Memory

Pined
Memory

Host

DRAM

Device

Pageable Data Transfer

Data transfer between host and device

• Allocated host memory is pageable

• GPU cannot safely access data in pageable

host memory

• When transferring data between the host and

device, the CUDA driver first copies data from

pageable host memory to a page locked or

pinned memory buffer before sending it to the

device

• Pageable memory in CUDA is used for memory

allocation when data transfers between the

CPU and GPU are infrequent

• cudaMemcpy (void* dst, void *src, size_t nbytes, cudaMemcpyKind kind)

‣ Direction specifies locations (host or device) of src and dst

‣ Blocks CPU thread (returns after the copy is complete)

‣ Does not start copy until previous CUDA calls complete

• Kind: specifies the direction of the memory copy

‣ cudaMemcpyHostToHost

‣ cudaMemcpyHostToDevice

‣ cudaMemcpyDeviceToHost

• CudaFree(devPtr)

‣ Free memory from device Global memory

‣ Pointer to free object

Data memory allocation/release

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html#group__CUDART__TYPES_1g18fa99055ee694244a270e4d5101e95b
http://horacio9573.no-ip.org/cuda/group__CUDART__TYPES_g18fa99055ee694244a270e4d5101e95b.html#gg18fa99055ee694244a270e4d5101e95bdeec295de8a74ac2a74f98ffb6c5d7c7
http://horacio9573.no-ip.org/cuda/group__CUDART__TYPES_g18fa99055ee694244a270e4d5101e95b.html#gg18fa99055ee694244a270e4d5101e95b1a03d03a676ea8ec51b9b1e193617568
http://horacio9573.no-ip.org/cuda/group__CUDART__TYPES_g18fa99055ee694244a270e4d5101e95b.html#gg18fa99055ee694244a270e4d5101e95b5653197602d3455a530db5a7edb1a253

Refers to the coordination of threads accessing global memory or shared memory

• Device synchronization

‣ In CUDA, the CPU and the GPU operate asynchronously

‣ Synchronization is necessary to ensure that the GPU has finished executing before continuing with the CPU code

cudaMemcpy(d_data, h_data, size * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpyAsync(h_result, d_result, size * sizeof(float), cudaMemcpyDeviceToHost);
cudaDeviceSynchronize();

• Thread synchronization

‣ Threads within a block can access shared memory, which is a memory space shared among all threads in a block

‣ Ensure that threads accessing shared memory do not interfere with each other

__syncthreads();
// compute using shared memory

Data memory allocation/release

Pageable
Memory

Pined
Memory

Host

DRAM

Device

Pageable Data Transfer

Data transfer between host and device

Pined
Memory

DRAM

Device

Host

Pinned Data Transfer Pinned data transfer is pinned or locked

• Memory cannot be moved by the operating

system

• Pinned memory is memory that is locked in

physical memory and is accessible to both

the CPU and the GPU

• Allocation and deallocation is expensive than

pageable memory

• Provides higher transfer throughput for large

data transfers

Pageable and pinned memory transfer

Pageable Data Transfer

// allocate and initialize
int *h_a, *d_a; // host and device specific arrays
h_a = (float*)malloc(nbytes);
cudaMalloc(&d_a, nbytes);

// memcpy H->D
cudaMemcpy(d_a, h_a, nbytes, cudaMemcpyHostToDevice);

// kernel compute
kernelGPU<<<>>>(…, d_a, …);

//cudaMemcpy D->H
cudaMemcpy(h_a, d_a, nbytes, cudaMemcpyDeviceToHost);
verifyOnHost(host_a, N);

//Free host and device memory
cudaFree(device_a); Free(host_a)

Pinned Data Transfer

// allocate and initialize

cudaMallocHost(nbytes);
cudaMalloc(&d_a, nbytes);

// memcpy H->D

cudaMemcpy(d_a, h_a, nbytes, cudaMemcpyHostToDevice);

// kernel compute

kernelGPU<<<>>>(…, d_a, …);

//cudaMemcpy D->H

cudaMemcpy(h_a, d_a, nbytes, cudaMemcpyDeviceToHost);
verifyOnHost(host_a, N);

//Free host and device memory

cudaFree(device_a); cudaFreeHost(host_a)

Vector sum pageable memory transfer

/* Define block and grid sizes */
 int blockSize = 256;
 int gridSize = (nElem + blockSize - 1) / blockSize;

/* Measure time for GPU execution */
 start = cpuSecond();
 sumArraysOnGPU<<<gridSize, blockSize>>>(d_A, d_B, d_C, nElem);
 checkCuda(cudaDeviceSynchronize()); // Ensure GPU kernel finishes
 double gpuTime = cpuSecond() - start;
 printf("GPU Execution Time: %f seconds\n", gpuTime);

/* Copy result from device to host */
 checkCuda(cudaMemcpy(gpuRef, d_C, size, cudaMemcpyDeviceToHost));

/* Host memory allocation */

float *h_A, *h_B, *hostRef, *gpuRef;
h_A = (float*)malloc(size);
h_B = (float*)malloc(size);
hostRef = (float*)malloc(size); // Result from CPU
gpuRef = (float *)malloc(size); // Result from GPU

/* malloc device global memory */

*float *d_A, *d_B, *d_C;
checkCuda(cudaMalloc(&d_A, size));
checkCuda(cudaMalloc(&d_B, size));
checkCuda(cudaMalloc(&d_C, size));

/* Copy data from host to device*/

lcudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

Pageable Data Transfer

Pinned Data Transfer

Vector sum pinned memory transfer

/* malloc device global memory */

float *h_A, *h_B, *hostRef, *gpuRef;
cudaMallocHost((void**)&h_A, size); // Use cudaMallocHost for pinned memory
cudaMallocHost((void**)&h_B, size); // Use cudaMallocHost for pinned memory
cudaMallocHost((void**)&hostRef, size); // Result from CPU
cudaMallocHost((void**)&gpuRef, size); // Result from GPU

/* Copy data from host to device */
 checkCuda(cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice));
 checkCuda(cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice));

/* malloc device global memory */

 float *d_A, *d_B, *d_C;
 checkCuda(cudaMalloc(&d_A, size));
 checkCuda(cudaMalloc(&d_B, size));
 checkCuda(cudaMalloc(&d_C, size));

/* Copy data from host to device */
 checkCuda(cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice));
 checkCuda(cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice));

/* Define block and grid sizes */
 int blockSize = 256;
 int gridSize = (nElem + blockSize - 1) / blockSize;

/* Measure time for GPU execution */
 start = cpuSecond();
 sumArraysOnGPU<<<gridSize, blockSize>>>(d_A, d_B, d_C, nElem);
 checkCuda(cudaDeviceSynchronize()); // Ensure GPU kernel finishes
 double gpuTime = cpuSecond() - start;
 printf("GPU Execution Time: %f seconds\n", gpuTime);

/* Copy result from device to host */
 checkCuda(cudaMemcpy(gpuRef, d_C, size, cudaMemcpyDeviceToHost));

Vector sum pageable and pinned memory transfer

N Pageable mem transfer Pinned mem transfer SlowDown

1 << 20 0.000500 0.00036 0.72

1 << 22 0.000486 0.000225 0.462962962962963

1 << 24 0.001842 0.002379 1.29153094462541

1 << 26 0.003168 0.001021 0.322285353535354

1 << 28 0.004015 0.007195 1.7920298879203

1 << 30 0.029974 0.019884 0.663374924934944

Zero-copy memory

GPU threads can directly access zero-copy memory1

• Leveraging host memory when there is insufficient device memory

• Avoiding explicit data transfer between the host and device

• Improving PCIe transfer rates

• When using zero-copy memory to share data between the host and device, you must synchronise memory access across the host and device

Host cannot access device variables and device cannot access host variables directly, one exception rule to this : zero copy memory

CUDA API call2

• cudaHostAlloc(void **ptr, size_t size, unsigned int flags);

• flags = cudaHostAllocMapped, cudaHostAllocDefault, cudaHostAllocPortable

• Most relevant flag to zero-copy memory is cudaHostAllocMapped, which returns host memory that is mapped into the device address space

Zero Data Transfer

Vector sum Zero copy transfer

/* Allocate and initialize host memory for zero-copy*/

cudaHostAlloc((void**)&h_A, size, cudaHostAllocMapped);
cudaHostAlloc((void**)&h_B, size, cudaHostAllocMapped);
cudaHostAlloc((void**)&h_C, size, cudaHostAllocMapped);

/* Get device pointers for zero-copy memory*/
 cudaHostGetDevicePointer(&d_A, h_A, 0);
 cudaHostGetDevicePointer(&d_B, h_B, 0);
 cudaHostGetDevicePointer(&d_C, h_C, 0);

/* malloc device global memory */

 float *d_A, *d_B, *d_C;
 checkCuda(cudaMalloc(&d_A, size));
 checkCuda(cudaMalloc(&d_B, size));
 checkCuda(cudaMalloc(&d_C, size));

/* Copy data from host to device */
 checkCuda(cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice));
 checkCuda(cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice));

/* Define block and grid sizes */
 int blockSize = 256;
 int gridSize = (nElem + blockSize - 1) / blockSize;

/* Measure time for GPU execution */
 start = cpuSecond();
 sumArraysOnGPU<<<gridSize, blockSize>>>(d_A, d_B, d_C, nElem);
 checkCuda(cudaDeviceSynchronize()); // Ensure GPU kernel finishes
 double gpuTime = cpuSecond() - start;
 printf("GPU Execution Time: %f seconds\n", gpuTime);

/* Copy result from device to host */
 checkCuda(cudaMemcpy(gpuRef, d_C, size, cudaMemcpyDeviceToHost));

SIZE Device memory
 (ELAPSED TIME [s])

Zero-copy Memory
(ELAPSED TIME [s])

SlowDown

1 KB 0.000033 0.000014 0.424242424242424

4 KB 0.007286 0.002334 0.320340378808674

16 KB 0.007289 0.002335 0.320345726437097

64 KB 0.001673 0.002342 1.39988045427376

256 kB 0.002434 0.002358 0.968775677896467

1 MB 0.002446 0.002524 1.03188879803761

4 MB 0.000849 0.000454 0.534746760895171

16 MB 0.004292 0.004123 0.960624417520969

64 MB 0.012136 0.007024 0.578773895847067

256 MB 0.051559 0.029347 0.569192575496034

Comparison of Zero-copy Memory vs Device Memory

GPU MemoryHost Memory PCI ExpresesUnified memory

Unified virtual memory (UVM)

Developer view of GPU memoryIncreased memory latency

• Single allocation, single pointer, accessible everywhere
eliminate the need of explicit copy and simplify code porting

• Enables the sharing of memory which reduces overall usage

Limited control over memory placement

UVM automatically manages memory placement, which
may not always be optimal for a given application

CPU

DATA

GPU

CPU

Time

cudaMallocManaged()

GPU

… data accesses by the CPU will
automatically be migrated

When UM is allocated, it may not be
resident initially on the CPU or the

GPU

?

How does cudaMallocManaged actually works?

CPU

DATA

GPU

CPU

Time

cudaMallocManaged()

GPU

?

When some work asks for the memory
for the first time, a page fault will

occur

init()
?

How does cudaMallocManaged actually works?

CPU

DATA

GPU

CPU

Time

cudaMallocManaged()

GPU

?

init()

The page fault will trigger the migration
of the demanded memory

How does cudaMallocManaged actually works?

CPU

DATA

GPU

CPU

Time

cudaMallocManaged()

GPU

?

init()

This process repeats anytime the
memory is requested somewhere in
the system where it is not resident

?
work<<<>>>()

How does cudaMallocManaged actually works?

CPU

DATA

GPU

CPU

Time

cudaMallocManaged()

GPU

?

init()

This process repeats anytime the
memory is requested somewhere in
the system where it is not resident

work<<<>>>()

How does cudaMallocManaged actually works?

int N = 10000;
size_t size = N*sizeof(int);

int *a;
a = (int*)malloc(size);

free(a);

int N = 10000;
size_t size = N*sizeof(int);

int *a;
cudaMallocManaged(&a, size);

cudaFree(a);

CPU code CUDA Code with UM

Allow to allocate and free memory

Simplified memory management code

Vector sum Unified memory transfer

Unified memory Transfer

/* Unified Memory allocation */
float *a, *b, *hostRef, *gpuRef;
checkCuda(cudaMallocManaged(&a, size));
checkCuda(cudaMallocManaged(&b, size));
checkCuda(cudaMallocManaged(&hostRef, size));
checkCuda(cudaMallocManaged(&gpuRef, size));

/* Define block and grid sizes */
int blockSize = 256;
int gridSize = (nElem + blockSize - 1) / blockSize;

/* Measure time for GPU execution */
 start = cpuSecond();
 sumArraysOnGPU<<<gridSize, blockSize>>>(d_A, d_B, d_C, nElem);

checkCuda(cudaDeviceSynchronize());
double gpuTime = cpuSecond() - start;
printf("GPU Execution Time: %f seconds\n", gpuTime);

/* Copy result from device to host */
checkCuda(cudaMemcpy(gpuRef, d_C, size,
cudaMemcpyDeviceToHost));

Performance consideration4

Best Practices for porting a code

Identify Hot Spots

Analyze your application's memory access patterns and identify the critical data that
should be prefetched

Time Prefetching

Carefully time the prefetch operations to overlap with kernel execution and minimize
latency

Monitor Performance

Use profiling tools to measure the impact and fine-tune its usage: profiler the code with
Nsight-system + NVTX, Nsight compute

Understand the application

Mini app, Understand if the kernel is memory or compute bound

It’s all about memory access patternsIT’S ALL ABOUT MEMORY ACCESS PATTERNS

Depending on how you access memory
bandwidth can very greatly!

111 GB/sec

1418 GB/sec

HBM page size = 1kB
Burst size = 64 Bytes

724 GB/sec

#pragma acc parallel loop collapse(2)
 for (int i=0;i<n;++i)
 for (int j=0;j<n;++j)
 y[i*n+j] += x[j*n+i];

Depending on how you access memory bandwidth
can very greatly!

Memory access patterns

M00 M10 M20 M30

M10 M11 M12 M13

M20 M21 M22 M23

M30 M31 M32 M33

Aligned direction

in kernel code

M00 M10 M20 M30 M10 M11 M12 M13 M20 M21 M22 M23 M30 M31 M32 M33

T0 T1 T2 T3 T0 T1 T2 T3
. . .

Loading iteration 1Loading iteration 0

• For blocks that consist of multiple dimensions of threads,
the dimensions will be projected into a linear order before
partitioning into warps

• Each thread is shown as M(x,y), with x being the threadIdx.x
and y being threadIdx.y for the thread

• Cooperatively, the 32 threads in a warp present a single
memory access request comprised of the requested
addresses, which is serviced by one or more device memory
transactions.

Memory access patterns

M00 M10 M20 M30

M10 M11 M12 M13

M20 M21 M22 M23

M30 M31 M32 M33

Aligned direction

in kernel code

M00 M10 M20 M30 M10 M11 M12 M13 M20 M21 M22 M23 M30 M31 M32 M33

T0 T1 T2 T3 T0 T1 T2 T3
. . .

Loading iteration 1Loading iteration 0

M00 M10 M20 M30

M10 M11 M12 M13

M20 M21 M22 M23

M30 M31 M32 M33

Aligned direction

in kernel code

M00 M10 M20 M30 M10 M11 M12 M13 M20 M21 M22 M23 M30 M31 M32 M33

Loading iteration 1

T0 T1 T2 T3

Loading iteration 0

T0 T1 T2 T3

Memory bandwidth limits GPU-enabled applications
Memory Access Patterns ❘ 159

c04.indd 08/19/2014 Page 159

Registers

SMEM Read
Only

ConstantL1

L2 Cache

DRAM

SM0

Registers

SMEM Read
Only

ConstantL1

SM1

FIGURE 4-6

Aligned memory accesses occur when the ! rst address of a device memory transaction is an even
multiple of the cache granularity being used to service the transaction (either 32 bytes for L2 cache
or 128 bytes for L1 cache). Performing a misaligned load will cause wasted bandwidth.

Coalesced memory accesses occur when all 32 threads in a warp access a contiguous chunk of
memory.

Aligned coalesced memory accesses are ideal: A wrap accessing a contiguous chunk of memory
starting at an aligned memory address. To maximize global memory throughput, it is important
to organize memory operations to be both aligned and coalesced. Figure 4-7 illustrates an aligned
and coalesced memory load operation. In this case, only a single 128-byte memory transaction is
required to read the data from device memory. Figure 4-8 illustrates a misaligned and uncoalesced
memory access. In this case, there may be as many as three 128-byte memory transactions to read
the data from device memory: one starting at offset 0 to include the data being read below the con-
tiguous region, one at offset 256 to read the data being read above the contiguous region, and one
at offset 128 that fetches the bulk of the data. Note that most of the bytes fetched by the lower and
upper memory transactions will not be used, leading to wasted bandwidth.

0 31

128 160 192 224 256memory address

thread ID

FIGURE 4-7

In general, you should optimize for memory transaction ef! ciency: Use the least number of transac-
tions to service the maximum number of memory requests. How many transactions are needed, and
how much throughput is delivered, varies with device compute capability.

• Memory operations are issued per warp, with each
thread providing its own memory address

• Global memory loads/stores are staged through
L2 and sometimes L1 caches

• Global memory accesses go through L2 cache,
with optional L1 cache usage based on architecture

• Memory transactions use 128-byte or 32-byte
segments, depending on cache involvement

• L1 cache lines are 128 bytes and map to 128-byte
aligned segments in device memory

• Perfect mapping occurs when each thread in a
warp requests one 4-byte value, matching the 128-
byte cache line size

Misaligned Memory AccessAligned Memory Access

Efficient memory access is crucial

accessed by threads are arranged such that each thread

accesses data in consecutive memory locations

L1 and L2 cache granularity: 32 bytes 128 byte

accessed by threads are not consecutive or not aligned to

memory transaction boundaries

Memory Access Patterns ❘ 159

c04.indd 08/19/2014 Page 159

Registers

SMEM Read
Only

ConstantL1

L2 Cache

DRAM

SM0

Registers

SMEM Read
Only

ConstantL1

SM1

FIGURE 4-6

Aligned memory accesses occur when the ! rst address of a device memory transaction is an even
multiple of the cache granularity being used to service the transaction (either 32 bytes for L2 cache
or 128 bytes for L1 cache). Performing a misaligned load will cause wasted bandwidth.

Coalesced memory accesses occur when all 32 threads in a warp access a contiguous chunk of
memory.

Aligned coalesced memory accesses are ideal: A wrap accessing a contiguous chunk of memory
starting at an aligned memory address. To maximize global memory throughput, it is important
to organize memory operations to be both aligned and coalesced. Figure 4-7 illustrates an aligned
and coalesced memory load operation. In this case, only a single 128-byte memory transaction is
required to read the data from device memory. Figure 4-8 illustrates a misaligned and uncoalesced
memory access. In this case, there may be as many as three 128-byte memory transactions to read
the data from device memory: one starting at offset 0 to include the data being read below the con-
tiguous region, one at offset 256 to read the data being read above the contiguous region, and one
at offset 128 that fetches the bulk of the data. Note that most of the bytes fetched by the lower and
upper memory transactions will not be used, leading to wasted bandwidth.

0 31

128 160 192 224 256memory address

thread ID

FIGURE 4-7

In general, you should optimize for memory transaction ef! ciency: Use the least number of transac-
tions to service the maximum number of memory requests. How many transactions are needed, and
how much throughput is delivered, varies with device compute capability.

160 ❘ CHAPTER 4 GLOBAL MEMORY

c04.indd 08/19/2014 Page 160

0 31

128 160 192 224 256memory address

thread ID

FIGURE 4-8

Global Memory Reads
In an SM, data is pipelined through one of the following three cache/buffer paths, depending on
what type of device memory is being referenced:

 ➤ L1/L2 cache

 ➤ Constant cache

 ➤ Read-only cache

L1/L2 cache is the default path. To pass data through the other two paths requires explicit manage-
ment by the application, but can lead to performance improvement depending on the access patterns
used. Whether global memory load operations pass through the L1 cache depends on two factors:

 ➤ Device compute capability

 ➤ Compiler options

On Fermi GPUs (compute capability 2.x) and Kepler K40 or later GPUs (compute capability 3.5 and
up), L1 caching of global memory loads can be either enabled or disabled with compiler ! ags. By
default, the L1 cache is enabled for global memory loads on Fermi devices and disabled on K40 and
later GPUs. The following ! ags inform the compiler to disable the L1 cache:

-Xptxas -dlcm=cg

With the L1 cache disabled, all load requests to global memory go directly to the L2 cache; when an
L2 miss occurs, the requests are serviced by DRAM. Each memory transaction may be conducted
by one, two, or four segments, where one segment is 32 bytes.

The L1 cache can also be explicitly enabled with the following ! ag:

-Xptxas -dlcm=ca

With this ! ag set, global memory load requests " rst attempt to hit in L1 cache. On an L1 miss, the
requests go to L2. On an L2 miss, the requests are serviced by DRAM. In this mode, a load memory
request is serviced by a 128-byte device memory transaction.

__global__ void sumAddalignedacces(float *a, float *b, float *c, int n, int offset) {

 for (int idx = offset, k = 0; idx < n; idx++, k++)

C[k] = A[idx] + B[idx];

}

__global__ void missedAlignedAccessed(float *a, float *b, float *c, int n) {

 int index = blockIdx.x * blockDim.x + threadIdx.x;

 int k = i + offset;

 if (int i < k) { c[i] = a[i] + b[I]; }

}

Efficient memory access is crucial

Time your kernels

Offset SIMULATION TIME (SECONDS)

0 0.003968

12 0.004011

33 0.004024

Array of Structures (AOS)

struct innerStruct {

float x;

float y;

};

struct innerStruct myAoS[N];

172 ❘ CHAPTER 4 GLOBAL MEMORY

c04.indd 08/19/2014 Page 172

Figure 4-22 illustrates the memory layout of both AoS and SoA approaches. Storing the example
data in AoS format on the GPU and performing an operation that only requires the x ! eld would
result in a 50 percent loss of bandwidth as y values are implicitly loaded in each 32-byte segment or
128-byte cache line. An AoS format would also waste L2 cache space on unneeded y values.

Storing the data in SoA fashion makes full use of GPU memory bandwidth. Because there is no
interleaving of elements of the same ! eld, the SoA layout on the GPU provides coalesced memory
accesses and can achieve more ef! cient global memory utilization.

x

t0 t1 t2 t3

y xx yy xx yy xx y

AoS memory layout

thread ID

x

t0 t1 t2 t3

x xx x y yy yy y

SoA memory layout

FIGURE 4-22

AOS VERSUS SOA

Many parallel programming paradigms, in particular SIMD-style paradigms, pre-
fer SoA. In CUDA C programming, SoA is also typically preferred because data ele-
ments are pre-arranged for ef! cient coalesced access to global memory, since data
elements of the same ! eld that would be referenced by the same memory operation
are stored adjacent to each other.

To help understand the performance implications of accessing data in each data layout, you will
compare two kernels with the same simple math operation: one implemented to process an AoS data
layout, and the other for the SoA data layout.

Example: Simple Math with the AoS Data Layout
The following kernel is implemented using an AoS layout. The global memory array of structs is
stored linearly with the variables x and y interleaved. The inputs and outputs of each thread are the
same: a single innerStruct structure.

__global__ void testInnerStruct(innerStruct *data,
 innerStruct *result, const int n) {
 unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;

 if (i < n) {
 innerStruct tmp = data[i];
 tmp.x += 10.f;
 tmp.y += 20.f;
 result[i] = tmp;
 }
}

Structure of Arrays (SOA)

struct innerStruct {

float x[N];

float y[N];

};

struct innerArray moa;

172 ❘ CHAPTER 4 GLOBAL MEMORY

c04.indd 08/19/2014 Page 172

Figure 4-22 illustrates the memory layout of both AoS and SoA approaches. Storing the example
data in AoS format on the GPU and performing an operation that only requires the x ! eld would
result in a 50 percent loss of bandwidth as y values are implicitly loaded in each 32-byte segment or
128-byte cache line. An AoS format would also waste L2 cache space on unneeded y values.

Storing the data in SoA fashion makes full use of GPU memory bandwidth. Because there is no
interleaving of elements of the same ! eld, the SoA layout on the GPU provides coalesced memory
accesses and can achieve more ef! cient global memory utilization.

x

t0 t1 t2 t3

y xx yy xx yy xx y

AoS memory layout

thread ID

x

t0 t1 t2 t3

x xx x y yy yy y

SoA memory layout

FIGURE 4-22

AOS VERSUS SOA

Many parallel programming paradigms, in particular SIMD-style paradigms, pre-
fer SoA. In CUDA C programming, SoA is also typically preferred because data ele-
ments are pre-arranged for ef! cient coalesced access to global memory, since data
elements of the same ! eld that would be referenced by the same memory operation
are stored adjacent to each other.

To help understand the performance implications of accessing data in each data layout, you will
compare two kernels with the same simple math operation: one implemented to process an AoS data
layout, and the other for the SoA data layout.

Example: Simple Math with the AoS Data Layout
The following kernel is implemented using an AoS layout. The global memory array of structs is
stored linearly with the variables x and y interleaved. The inputs and outputs of each thread are the
same: a single innerStruct structure.

__global__ void testInnerStruct(innerStruct *data,
 innerStruct *result, const int n) {
 unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;

 if (i < n) {
 innerStruct tmp = data[i];
 tmp.x += 10.f;
 tmp.y += 20.f;
 result[i] = tmp;
 }
}

172 ❘ CHAPTER 4 GLOBAL MEMORY

c04.indd 08/19/2014 Page 172

Figure 4-22 illustrates the memory layout of both AoS and SoA approaches. Storing the example
data in AoS format on the GPU and performing an operation that only requires the x ! eld would
result in a 50 percent loss of bandwidth as y values are implicitly loaded in each 32-byte segment or
128-byte cache line. An AoS format would also waste L2 cache space on unneeded y values.

Storing the data in SoA fashion makes full use of GPU memory bandwidth. Because there is no
interleaving of elements of the same ! eld, the SoA layout on the GPU provides coalesced memory
accesses and can achieve more ef! cient global memory utilization.

x

t0 t1 t2 t3

y xx yy xx yy xx y

AoS memory layout

thread ID

x

t0 t1 t2 t3

x xx x y yy yy y

SoA memory layout

FIGURE 4-22

AOS VERSUS SOA

Many parallel programming paradigms, in particular SIMD-style paradigms, pre-
fer SoA. In CUDA C programming, SoA is also typically preferred because data ele-
ments are pre-arranged for ef! cient coalesced access to global memory, since data
elements of the same ! eld that would be referenced by the same memory operation
are stored adjacent to each other.

To help understand the performance implications of accessing data in each data layout, you will
compare two kernels with the same simple math operation: one implemented to process an AoS data
layout, and the other for the SoA data layout.

Example: Simple Math with the AoS Data Layout
The following kernel is implemented using an AoS layout. The global memory array of structs is
stored linearly with the variables x and y interleaved. The inputs and outputs of each thread are the
same: a single innerStruct structure.

__global__ void testInnerStruct(innerStruct *data,
 innerStruct *result, const int n) {
 unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;

 if (i < n) {
 innerStruct tmp = data[i];
 tmp.x += 10.f;
 tmp.y += 20.f;
 result[i] = tmp;
 }
}

Array of Structure versus Structure of Arrays

Sample code: EPIC in a predefined electric field

Basic assumptions

Only compute the force from electric field
Neglect magnetic field

Main function

Particle position
Particle velocity
Electric field

OUR PARTICLE CODE

▪ We want something very simple to work with but reasonable to understand
▪ Electrostatic particles in a predefined electric field

▪ Compute the force from the electric field
▪ Neglect magnetic field
▪ Assume fixed E field

▪ Accelerate the particle

▪ Move the particle

OUR PARTICLE CODE

▪ We want something very simple to work with but reasonable to understand
▪ Electrostatic particles in a predefined electric field

▪ Compute the force from the electric field
▪ Neglect magnetic field
▪ Assume fixed E field

▪ Accelerate the particle

▪ Move the particle

OUR PARTICLE CODE

▪ We want something very simple to work with but reasonable to understand
▪ Electrostatic particles in a predefined electric field

▪ Compute the force from the electric field
▪ Neglect magnetic field
▪ Assume fixed E field

▪ Accelerate the particle

▪ Move the particle

OUR PARTICLE CODE

▪ We want something very simple to work with but reasonable to understand
▪ Electrostatic particles in a predefined electric field

▪ Compute the force from the electric field
▪ Neglect magnetic field
▪ Assume fixed E field

▪ Accelerate the particle

▪ Move the particle

OUR PARTICLE CODE

▪ We want something very simple to work with but reasonable to understand
▪ Electrostatic particles in a predefined electric field

▪ Compute the force from the electric field
▪ Neglect magnetic field
▪ Assume fixed E field

▪ Accelerate the particle

▪ Move the particle

AOS: EPIC in a predefined electric field

Struct for ParticleList

struct ParticleList {

 // An array of particles Structures

struct Particle* parts;

// This represents the number of particles in the array

int n;

};

pl->parts = (struct Particle*)malloc(n * sizeof(struct Particle));

// Move particles by updating their position
void move(struct ParticleList* pl, double dt, int DIM) {
 for (int i = 0; i < pl->n; ++i) {
 for (int j = 0; j < DIM; ++j) {
 pl->parts[i].pos[j] += dt * pl->parts[i].vel[j];
 // Apply periodic boundary conditions
 if (pl->parts[i].pos[j] > 1.0) {
 pl->parts[i].pos[j] -= 1.0;
 }
 if (pl->parts[i].pos[j] < 0.0) {
 pl->parts[i].pos[j] += 1.0;
 }
 }
 }
}

// Set the electric field for each particle
void setE(struct ParticleList* pl, int DIM) {
 for (int i = 0; i < pl->n; ++i) {
 for (int j = 0; j < DIM; ++j) {
 pl->parts[i].E[j] = sin(M_PI * pl->parts[i].pos[j]);
 }
 }
}

// Accelerate particles by updating their velocity
void accel(struct ParticleList* pl, double dt, int DIM) {
 for (int i = 0; i < pl->n; ++i) {
 for (int j = 0; j < DIM; ++j) {
 pl->parts[i].vel[j] += dt * pl->parts[i].q / pl->parts[i].m * pl->parts[i].E[j];
 }
 }
}

 // Main simulation loop
 int step = 0;
 for (double t = 0; t < 1; t += dt, ++step) {
	 nvtxRangePush("Time Step");
 nvtxRangePush("setE");	
 setE(&p, DIM); // Update electric field for all particles
	 nvtxRangePop(); //SetE
	 nvtxRangePush("accel");
 accel(&p, dt, DIM); // Update velocities of all particles
 nvtxRangePop(); // Accel
	 nvtxRangePush("move");
	 move(&p, dt, DIM); // Update positions of all particles
	 nvtxRangePop();
	 nvtxRangePop(); // Time Step

 // Save data every ndumps steps
 if (step % ndumps == 0) {
 printData(&p, t, outFile, DIM); // Save particle data
 }
 }

SOA: EPIC in a predefined electric field

Struct for ParticleList

struct ParticleList {
 double *pos[MAX_DIM]; // Array of pointers for position
 double *vel[MAX_DIM]; // Array of pointers for velocity
 double *E[MAX_DIM]; // Array of pointers for electric field
 double *q; // Array for charges
 double *m; // Array for masses
 int n; // Number of particles

};

for (int i = 0; i < DIM; ++i) {
 pl->pos[i] = (double*)malloc(n * sizeof(double));
 pl->vel[i] = (double*)malloc(n * sizeof(double));
 pl->E[i] = (double*)malloc(n * sizeof(double));
}
pl->q = (double*)malloc(n * sizeof(double));
pl->m = (double*)malloc(n * sizeof(double));

for (int j = 0; j < DIM; ++j) {
 for (int i = 0; i < pl->n; ++i) {
 pl->E[j][i] = sin(M_PI * pl->pos[j][i]);
 }
}

// Accelerate particles by updating their velocity
void accel(struct ParticleList* pl, double dt, int DIM) {
 for (int j = 0; j < DIM; ++j) {
 for (int i = 0; i < pl->n; ++i) {
 pl->vel[j][i] += dt * pl->q[i] / pl->m[i] * pl->E[j][i];
 }
 }
}

// Move particles by updating their position
void move(struct ParticleList* pl, double dt, int DIM) {
 for (int j = 0; j < DIM; ++j) {
 for (int i = 0; i < pl->n; ++i) {
 pl->pos[j][i] += dt * pl->vel[j][i];
 // Apply periodic boundary conditions
 if (pl->pos[j][i] > 1.0) {
 pl->pos[j][i] -= 1.0;
 }
 if (pl->pos[j][i] < 0.0) {
 pl->pos[j][i] += 1.0;
 }
 }
 }
}

Data access pattern in functions like `setE`, `accel`, and `move`:

Time your kernels

RUNS SIMULATION TIME (SECONDS)

AOS 38.33

SOA 35. 93

Input parameters

number of Particles = 40000000
dimensions = 2
dt = 0.1
ndumps = 1000

Time your kernels

Runs N Kernel Configuration Elapsed Time on Device

Pageable memory 40000000 (156250, 256) 19.93

Pinned memory 40000000 (156250, 256) 19.21

CudaMallocManaged 40000000 (156250, 256) 19.59

Nsight Compute

Peageable Memory

Unified Memory

Optimising memory transfers: cudaMemPrefetchAsync5

What is cudaMemPrefetchAsync?

cudaMemPrefetchAsync1

CUDA function that allows you to explicitly move data to a specific memory location before it is actually needed

Supported Platforms2

works on both CPU and GPU memory and is supported on NVIDIA GPUs

How to use cudaMemPrefetchAsync?

Before Kernel Launch1

Call cudaMemPrefetchAsync to prefetch data into the cache before
the kernel that will use it runs

Syntax2

cudaMemPrefetchAsync(particles.pos, N * DIM * sizeof(float), device_id);

When use cudaMemPrefetchAsync?

Memory Bound Kernels1

most beneficial for kernels that are limited by memory access latency or bandwidth

Irregular Access Patterns2

particularly useful for workloads with unpredictable or scattered memory access patterns

Asynchronous Execution3

designed to be used in asynchronous programming models, where data transfers and computations can overlap

Multi-GPU Environments4

help optimize data movement between multiple GPUs or between the CPU and GPU

Time your kernels

Runs N Kernel Configuration Elapsed Time on Device

Pageable memory 40000000 (156250, 256) 19.93

Pinned memory 40000000 (156250, 256) 19.21

CudaMallocManaged 40000000 (156250, 256) 19.59

Prefetching 40000000 (524288, 128) 19.33

Nsight Compute

Peageable Memory

Unified Memory

Prefetch Memory

Nsight system report

Look at this pattern

How can we overlap kernel and data transfer?6

kernel execution, memory transfer that execute in issue-order on the GPU

By default, CUDA kernels are executed in a default stream

Instructions are excited in order (in any stream): an instruction must be completed before the next one can begin

What is a STREAM?

1
Sequence of CUDA operations

Kernel 1 Kernel 2

Time

Kernel 3 Kernel 4 Kernel 5

DEFAULT STREAM 0

Multiple streams or Non-default streams can be created and utilise by CUDA programmers

Kernels, with any single STREAM must execute in order

However, kernels in different, non-default streams, can interact concurrently, have no fixed order of execution

Non-default Stream behaviour

2
Rules of governing the behaviour of streams

Kernel 1 Kernel 2

Time

Kernel 3 Kernel 4 Kernel 5

DEFAULT STREAM 0

NON- DEFAULT STREAM 1

NON- DEFAULT STREAM 2

Kernel 1 Kernel 2

Kernel 3 Kernel 4 Kernel 5

Kernel 6

Understanding CUDA Non-Streams behaviour7

Introducing Streams and Events ❘ 271

c06.indd 08/19/2014 Page 271

To help illustrate how CUDA streams are used in practice, the following is a common pattern for
dispatching CUDA operations to multiple streams.

for (int i = 0; i < nStreams; i++) {
 int offset = i * bytesPerStream;
 cudaMemcpyAsync(&d_a[offset], &a[offset], bytePerStream, streams[i]);
 kernel<<grid, block, 0, streams[i]>>(&d_a[offset]);
 cudaMemcpyAsync(&a[offset], &d_a[offset], bytesPerStream, streams[i]);
}

for (int i = 0; i < nStreams; i++) {
 cudaStreamSynchronize(streams[i]);
}

Figure 6-1 illustrates a simple timeline of CUDA operations using three streams. Both data transfer
and kernel computation are evenly distributed among three concurrent streams.

KernelMemory Copy (H2D)

H2D

Serial

Concurrent
Performance improvement

time

time

H2D

H2D

K1

K2

K3

Memory Copy (D2H)

D2H

D2H

D2H

FIGURE 6-1

You might notice that the data transfer operations are not executed concurrently in Figure 6-1, even
though they are issued in separate streams. This contention is caused by a shared resource: the PCIe
bus. While these operations are independent from the point-of-view of the programming model,
because they share a common hardware resource their execution must be serialized. Devices with a
duplex PCIe bus can overlap two data transfers, but they must be in different streams and in differ-
ent directions. In Figure 6-1, observe that data transfer from the host to the device in one stream is
overlapped with data transfer from the device to the host in another.

The maximum number of concurrent kernels is device-dependent. Fermi devices support 16-way
concurrency, and Kepler devices support 32-way concurrency. The number of concurrent kernels is
further limited by available compute resource on devices, such as shared memory and registers. You
will explore these limitations through examples later in this chapter.

Stream Scheduling
Conceptually, all streams can run simultaneously. However, this is not always the reality when map-
ping streams to physical hardware. This section will illustrate how concurrent kernel operations in
multiple CUDA streams are scheduled by hardware.

Where it can be useful?

Kernel Enqueuing

Kernels are enqueued into a specific stream for
execution on the GPU.

Memory Transfer

Data transfers between host and device can be enqueued
asynchronously into streams.

Overlapped Execution

The GPU can execute kernels and memory transfers
concurrently in different streams.

Asynchronous Execution with Streams

When use cudaMemPrefetchAsync?

How to use streams in a CUDA program?1

cudaStream_t stream; cudaStreamCreate(&stream); // Note that a pointer must be passed to `cudaCreateStream`.

How to use streams in a CUDA program?2

someKernel<<<number_of_blocks, threads_per_block, 0,stream>>>();

How to Destroying Non-Default CUDA Streams?3

cudaStreamDestroy (stream);

Blocking and Non-blocking streams4

cudaStreamcreate is blocking streams, there is also exists non-blocking streams - But we do not cover it here

CUDA Stream Synchronization

• Explicit

‣ cudaDeviceSynchronize()
‣ Blocks until all CUDA operations are finished

‣ cudaStreamSynchronize(stream))
‣ Blocks until all CUDA operations are finished within given stream

‣ cudaEvenRecord(event, stream1), cudaStreamWaitEvent(stream2, event)
‣ Blocks until all CUDA operations are finished within given stream

• Implicit

‣ Page-locked memory allocation
‣ cudaMallocHost, cudaHostAlloc

‣ Device memory allocation
‣ cudaMalloc

‣ Blocking version of memory operations
‣ cudaMemcpy, cudaMemset

‣ Implicit synchronize all CUDA operations

Nsight system report

Look at this pattern

Time your kernels

Runs N Kernel Configuration Elapsed Time on Device

Pageable memory 40000000 (156250, 256) 19.93

Pinned memory 40000000 (156250, 256) 19.21

CudaMallocManaged 40000000 (156250, 256) 19.59

Prefetching 40000000 (524288, 128) 19.33

Streams 40000000 (524288, 128) 20.06

Nsight Compute

Peageable Memory

Unified Memory

Stream

Multiple streaming-GPU

388 ❘ CHAPTER 9 MULTI-GPU PROGRAMMING

c09.indd 08/19/2014 Page 388

 ➤ Synchronize execution across multiple GPUs using streams and events.

 ➤ Scale CUDA-aware MPI applications across a GPU-accelerated cluster.

You will see, through several examples, how applications can achieve near linear scalability when
executing on multiple devices.

MOVING TO MULTIPLE GPUS
The most common reasons for adding multi-GPU support to an application are:

 ➤ Problem domain size: Existing data sets are too large to ! t into the memory of a single GPU.

 ➤ Throughput and ef! ciency: If a single task ! ts within a single GPU, you may be able to
increase the throughput of an application by processing multiple tasks concurrently using
multiple GPUs.

A multi-GPU system allows you to amortize the power consumption of a server node across GPUs
by delivering more performance for a given unit of power consumed, while boosting throughput.

When converting your application to take advantage of multiple GPUs, it is important to properly
design inter-GPU communication. The ef! ciency of inter-GPU data transfers depends on how GPUs
are connected within a node, and across a cluster. There are two types of connectivity in multi-GPU
systems:

 ➤ Multiple GPUs connected over the PCIe bus in a single node

 ➤ Multiple GPUs connected over a network switch in a cluster

These connection topologies are not mutually exclusive. Figure 9-1 illustrates a simpli! ed topology
for a cluster with two compute nodes. GPU0 and GPU1 are connected via the PCIe bus on node0.
Similarly, GPU2 and GPU3 are connected via the PCIe bus on node1. The two nodes (node0
and node1) are connected to each other through In! niBand Switch.

GPU0

PCIe PCIe

InfiniBand Switch

GPU1 GPU2

node 0 node 1

GPU3

FIGURE 9-1

Each node may have one or more of the following: CPUs connected via CPU sockets and host chip-
sets, host DRAM, local storage devices, network Host Card Adaptors (HCAs), on-board network

When use cudaMemPrefetchAsync?

Get number of GPUs1

int numGPUs; cudaGetDeviceCount(&numGPUs);

Determine the number of particles per GPU2

int particlesPerGPU = N / numGPUs;

 For each GPU, allocate memory, create streams, and launch kernels3

cudaStream_t streams1[numGPUs], streams2[numGPUs];

Final data transfer and synchronization4

cudaStreamSynchronize

// Non-coalesced access example

for (int gpu = 0; gpu < numGPUs; ++gpu) {

cudaSetDevice(gpu); // Set the GPU

int numBlocks = (particles[gpu].n + BLOCK_SIZE - 1) /

BLOCK_SIZE;

setEKernel<<<numBlocks, BLOCK_SIZE, 0,

streams1[gpu]>>>(particles[gpu].d_pos, particles[gpu].d_E,

particles[gpu].n, DIM); }

cudaStreamSynchronize(streams2[gpu]); // Ensure all data is

transferred

Time your kernels

Runs N Kernel Configuration Elapsed Time on Device

Peag-able memory 40000000 (156250, 256) 19.93

Pinned memory 40000000 (156250, 256) 19.21

CudaMallocManaged 40000000 (156250, 256) 19.59

Prefetching 40000000 (524288, 128) 19.33

Multiple Streams 40000000 (524288, 256) 20.06

Multiple Streams-GPU 40000000 (39063, 256) 20.23

Nsight system report

Look at this pattern

Nsight system report

Multiple stream single gpu

Multiple stream-gpu

Implementing higher dimensional grid in CUDA8

Block Dimension: 5x3 = 15
Threads/Blocks
(6 Blocks) x(15 Threads/
Blocks) = 90 Total threads
in Grid

Introducing the CUDA Programming Model ❘ 31

c02.indd 08/19/2014 Page 31

Block (1, 1)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Kernel

Grid

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

DeviceHost

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

FIGURE 2-5

All threads spawned by a single kernel launch are collectively called a grid. All threads in a grid
share the same global memory space. A grid is made up of many thread blocks. A thread block is a
group of threads that can cooperate with each other using:

 ➤ Block-local synchronization

 ➤ Block-local shared memory

Threads from different blocks cannot cooperate.

Threads rely on the following two unique coordinates to distinguish themselves from each other:

 ➤ blockIdx (block index within a grid)

 ➤ threadIdx (thread index within a block)

These variables appear as built-in, pre-initialized variables that can be accessed within kernel func-
tions. When a kernel function is executed, the coordinate variables blockIdx and threadIdx are
assigned to each thread by the CUDA runtime. Based on the coordinates, you can assign portions of
data to different threads.

The coordinate variable is of type uint3, a CUDA built-in vector type, derived from the basic inte-
ger type. It is a structure containing three unsigned integers, and the 1st, 2nd, and 3rd components
are accessible through the fi elds x, y, and z respectively.

blockIdx.x
blockIdx.y
blockIdx.z

Host program specifies “grid-block-threads”
configuration for kernel at run time

• All threads spawned by a single kernel launch are

collectively called a grid

• All threads in a grid share the same global memory space

• A grid is made up of many thread blocks

• Kernel needs to know run-time configuration

• Built-in-three-dimensional type for threads (uint3) and

blocks (dim3)

- threadIdx.x, threadIdx.y, threadIdx.z

- blockIdx.x, blockIdx.y, blockIdx.z

- blockDim.x, blockDim.y, blockDim.z

Grid Dimension: 3x2 = 6 Blocks

Multidimensional Blocks and Grids

Type Variable Description

dim3 gridDim Dimensions of grid

uint3 blockIdx Index of block within grid

dim3 blockDim Dimensions of block

uint3 ThreadIdx Index of thread within block

Dimension Variable ID

1D (Dx) x

2D (Dx, Dy) y + y*Dx

3D (Dx, Dy, Dz) z + y*Dx + z*DxDy

Device Run-time Configuration

CUDA compute grid

CUDA compute grid supports 1-3 dimensions

gpu_kernel<<<4,2>>>(…)

gpu_kernel<<<dim3(8, 4 , 1), dim3(4,2,1) >>>(…)

gpu_kernel<<<dim3(16, 8 , 4), dim3(8, 4, 2) >>>(…)

Useful for when

Dealing with multidimensional data

CUDA's dim3 type for both 2D and 3D grids and blocks

CUDA variables: gridDim.x, gridDim.y, gridDim.z, gridBlock.z,...

GPU Thread Hierarchy

8

 In order to compute N elements on the GPU
in parallel, at least N concurrent threads
must be created on the device

 GPU threads are grouped togheter in teams
or blocks of threads

 Threads belonging to the same block or
team can cooperate togheter exchanging
data through a shared memory cache area

 each block of threads will be executed
independently

 no assumption is made on the blocks
execution order

Grid

Block
(0,1)

Block
(1,1)

Block
(2,1)

Block
(0,0)

Block
(1,0)

Block
(2,0)

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(3,0)

Thread
(4,0)

Thread
(0,1)

Thread
(1,1)

Thread
(2,1)

Thread
(3,1)

Thread
(4,1)

Thread
(0,2)

Thread
(1,2)

Thread
(2,2)

Thread
(3,2)

Thread
(4,2)

Thread
(0,3)

Thread
(1,3)

Thread
(2,3)

Thread
(3,3)

Thread
(4,3)

Two matrix multiplication

M00 M10 M20 M30

N00 N10

N01 N11

N02 N12

N03 N13

P00 P10 P20 P30

j=0

i=0

M

N

P

P00 = M00 * N00 + M10 * N10 + M20 * N20 + +M30 * N30

P10 = M00 * N10 + M10 * N11 + M20 * N12 + +M30 * N13

Pij = ∑n
k=1 Mik ⋅ Nkj

Two matrix multiplication

void matrixMultOnHost(float* M, float* N, float* P, int Width){

for (int row = 0; row < Width; ++row){

for (int col = 0; col < Width; ++col){

 // accumulate element-wise products

float pval = 0;

for (int k = 0; k < Width; ++k){

float a = M[row*Width + k];

float b = M[k*Width + col];

pval += a*b;

}

P[row*width + col] = pval;

 }

}

}

P = M * N

CUDA compute grid supports 1-3 dimensionsCUDA compute grid (advanced)

CUDA compute grid supports 1-3 dimensions => eases moving multidimensional loops into GPU kernels

• CUDA “hides” loop headers into kernel launch parameters
• Ranges are distributed between threads and blocks of threads
• Blocks number is rounded up to handle the remainder

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.z;

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.z;
int k = blockIdx.z * blockDim.z + threadIdx.z;

2D

3D

50 ❘ CHAPTER 2 CUDA PROGRAMMING MODEL

c02.indd 08/19/2014 Page 50

In a matrix addition kernel, a thread is usually assigned one data element to process. Accessing the
assigned data from global memory using block and thread index is the ! rst issue you need to solve.
Typically, there are three kinds of indices for a 2D case you need to manage:

 ➤ Thread and block index

 ➤ Coordinate of a given point in the matrix

 ➤ Offset in linear global memory

For a given thread, you can obtain the offset in global memory from the block and thread index by
! rst mapping the thread and block index to coordinates in the matrix, then mapping those matrix
coordinates to a global memory location.

In the ! rst step, you can map the thread and block index to the coordinate of a matrix with the
following formula:

ix = threadIdx.x + blockIdx.x * blockDim.x
iy = threadIdx.y + blockIdx.y * blockDim.y

In the second step, you can map a matrix coordinate to a global memory location/index with the
following formula:

idx = iy * nx + ix

Figure 2-10 illustrates the corresponding relationship among block and thread indices, matrix coor-
dinates, and linear global memory indices.

nx

ny

matrix coordinate: (ix,iy)
global linear memory index: idx = iy*nx + ix

ix = threadIdx.x + blockIdx.x * blockDim.x

iy =
 threadIdx.y +

 blockIdx.y * blockD
im

.y

(ix,iy)

FIGURE 2-10

Two matrix multiplication on GPU

// Kernel for matrix multiplication

__global__

void matrixMultiplicationKernel(float* M, float* N, float* Pd, int Width)
{

int row = blockIdx.y * blockDim.y + threadIdx.y;
int col = blockIdx.x * blockDim.x + threadIdx.x;

 if (row < Width && col < Width) {
 float sum = 0;
 for (int k = 0; k < Width; ++k) {
 sum += M[row * Width + k] * N[k * Width + col];
 }
 Pd[row * Width + col] = sum;
 }
}

one Pd element. In the example, thread (0, 0) of block (0, 0) calculates
Pd0,0, whereas thread (0, 0) of block (1, 0) calculates Pd2,0. It is easy to
verify that one can identify the Pd element calculated by thread (0, 0)
of block (1, 0) with the formula given above: Pd[bx* TILE_WIDTH þ tx]

[by* TILE_WIDTH þ ty] ¼ Pd[1*2 þ 0][0*2 þ 0] ¼ Pd[2][0]. The reader
should work through the index derivation for as many threads as it takes to
become comfortable with the concept.

Once we have identified the indices for the Pd element to be calculated by
a thread, we also have identified the row (y) index ofMd and the column (x)
index of Nd for input values. As shown in Figure 4.3, the row index of Md
used by thread (tx, ty) of block (bx, by) is (by*TILE_WIDTH þ ty). The col-
umn index of Nd used by the same thread is (bx*TILE_WIDTH þ tx). We are
now ready to revise the kernel of Figure 3.11 into a version that uses multiple
blocks to calculate Pd.

Figure 4.5 illustrates the multiplication actions in each thread block. For
the small matrix multiplication, threads in block (0, 0) produce four dot
products: Thread (0, 0) generates Pd0,0 by calculating the dot product of
row 0 of Md and column 0 of Nd. Thread (1, 0) generates Pd1,0 by calcu-
lating the dot product of row 0 of Md and column 1 of Nd. The arrows of
Pd0,0, Pd1,0, Pd0,1, and Pd1,1 shows the row and column used for generat-
ing their result value.

Figure 4.6 shows a revised matrix multiplication kernel function that
uses multiple blocks. In Figure 4.6, each thread uses its blockIdx and
threadIdx values to identify the row index (Row) and the column index

Block(0,0)

Block(0,1) Block(1,1)

Block(1,0)

Pd0,0

Pd0,1

Pd0,2

Pd0,3

Pd1,0

Pd1,1

Pd1,2

Pd1,3

Pd2,0

Pd2,1

Pd2,2

Pd2,3

Pd3,0

Pd3,1

Pd3,2

Pd3,3

TILE_WIDTH = 2

FIGURE 4.4

A simplified example of using multiple blocks to calculate Pd.

66 CHAPTER 4 CUDA Threads

Two matrix multiplication on GPU

N Methods Time execution Speedup

2048x2048

Serial 25.18 1

CUDA 0.063 398.29

Unrolling loops9

Unrolling loops

__global__ void unrolledMatrixMultiplicationKernel(float *A, float *B, float *C, int n, int m, int p) {
 int i = blockIdx.x * blockDim.x + threadIdx.x; // Row index of C
 int j = blockIdx.y * blockDim.y + threadIdx.y; // Column index of C

 if (i < n && j < p) {
 float sum = 0; // Changed to float
 for (int k = 0; k < m - 3; k += 4) {
 sum += A[i * m + k] * B[k * p + j] + A[i * m + k + 1] * B[(k + 1) * p + j] +
 A[i * m + k + 2] * B[(k + 2) * p + j] + A[i * m + k + 3] * B[(k + 3) * p + j];
 }
 // Handle remaining elements
 for (int k = (m / 4) * 4; k < m; k++) {
 sum += A[i * m + k] * B[k * p + j];
 }
 C[i * p + j] = sum;
 }
}

Two matrix multiplication on GPU

N Methods Time execution Speedup

2048x2048

Serial 25.18 1

CUDA 0.063 398.29

Unrolled loop 0.055491 453.92

What Bandwidth can a kernel achieve?10

Theoretical Bandwidth vs. Effective Bandwidth

Theoretical Bandwidth

The absolute maximum bandwidth achievable with the hardware.

Effective Bandwidth

The measured bandwidth that a kernel actually achieves

Performance Gap

Effective bandwidth is often lower than theoretical bandwidth due to
various factors.

Optimization Importance

Bridging the gap between theoretical and effective bandwidth is a
key optimization goal.

What Bandwidth Can a Kernel Achieve? ❘ 179

c04.indd 08/19/2014 Page 179

WHAT BANDWIDTH CAN A KERNEL ACHIEVE?
When analyzing kernel performance, it is important to focus on memory latency, the time to satisfy
an individual memory request, and memory bandwidth, the rate at which device memory can be
accessed by an SM, measured in bytes per time unit.

In the last section, you experimented with two methods for improving kernel performance:

 ➤ Hiding memory latency by maximizing the number of concurrently executing warps, leading
to better saturation of the bus by keeping more memory accesses in-! ight.

 ➤ Maximizing memory bandwidth ef" ciency by properly aligning and coalescing memory
accesses.

However, sometimes a bad access pattern is inherent to the nature of the problem at hand. How
good is good enough for such a kernel? What is the best achievable performance in suboptimal
situations? In this section, you will use a matrix transpose example to learn how kernel band-
width can be adjusted using various tuning techniques. You will see that even with an inherently
imperfect access pattern, there are still several options in redesigning your kernel to achieve good
performance.

Memory Bandwidth
Most kernels are very sensitive to memory bandwidth, that is, they are memory bandwidth-bound.
As a result, it is often important to focus on memory bandwidth metrics while tuning kernels.
Bandwidth can be dramatically affected by how data in global memory is arranged, and how that
data is accessed by a warp. There are two types of bandwidth:

 ➤ Theoretical bandwidth

 ➤ Effective bandwidth

Theoretical bandwidth is the absolute maximum bandwidth achievable with the hardware at hand.
For a Fermi M2090 with ECC disabled, the peak theoretical device memory bandwidth is
177.6 GB/s. Effective bandwidth is the measured bandwidth that a kernel actually achieves, and is
calculated using the following equation:

effective bandwidth (GB/s) = (bytes read+bytes written) × −10 9

time elapsed

For example, for a copy of a 2048 × 2048 matrix containing 4-byte integers to and from the device,
the effective bandwidth can be computed with the following formula:

effective bandwidth (GB/s) = 2048
time elapsed
× × × −048 4 2× 10 9

You will measure and tune the effective bandwidth of the matrix transpose kernel in the
following section.

180 ❘ CHAPTER 4 GLOBAL MEMORY

c04.indd 08/19/2014 Page 180

Matrix Transpose Problem
Matrix transpose is a basic problem in linear algebra. While basic, it is used in many applications.
Taking the transpose of a matrix implies exchanging each row with the corresponding column.
Figure 4-23 illustrates a simple matrix and its transpose.

0
0

1

1

2

2

3

3

4

4

5 6 7
5

6

7

8 9

matrix
transposed

10 11

8

9

10

11

FIGURE 4-23

The following is a host-based implementation of an out-of-place transpose algorithm using single-
precision ! oating-point values. Suppose the matrix is stored in a 1D array. The transpose can be
easily calculated by transforming array index values to reverse row and column coordinates.

void transposeHost(float *out, float *in, const int nx, const int ny) {
 for (int iy = 0; iy < ny; ++iy) {
 for (int ix = 0; ix < nx; ++ix) {
 out[ix*ny+iy] = in[iy*nx+ix];
 }
 }
}

There are two 1D arrays storing matrices in this function: The input matrix in and the transposed
matrix out. The matrix dimensionality is de" ned as nx rows by ny columns. The result of the trans-
pose operation when implemented on a 1D array is illustrated in Figure 4-24.

1 2 3 40 11 22 33 44 55 66 77 88 9 10 11

4 8 1 50 44 88 11 55 99 22 6 10 3 7 11

data layout of original matrix

data layout of transposed matrix

FIGURE 4-24

Observing the input and output layouts, you will notice:
 ➤ Reads: accessed by rows in the original matrix; results in coalesced access.

 ➤ Writes: accessed by columns in the transposed matrix; results in strided access.

180 ❘ CHAPTER 4 GLOBAL MEMORY

c04.indd 08/19/2014 Page 180

Matrix Transpose Problem
Matrix transpose is a basic problem in linear algebra. While basic, it is used in many applications.
Taking the transpose of a matrix implies exchanging each row with the corresponding column.
Figure 4-23 illustrates a simple matrix and its transpose.

0
0

1

1

2

2

3

3

4

4

5 6 7
5

6

7

8 9

matrix
transposed

10 11

8

9

10

11

FIGURE 4-23

The following is a host-based implementation of an out-of-place transpose algorithm using single-
precision ! oating-point values. Suppose the matrix is stored in a 1D array. The transpose can be
easily calculated by transforming array index values to reverse row and column coordinates.

void transposeHost(float *out, float *in, const int nx, const int ny) {
 for (int iy = 0; iy < ny; ++iy) {
 for (int ix = 0; ix < nx; ++ix) {
 out[ix*ny+iy] = in[iy*nx+ix];
 }
 }
}

There are two 1D arrays storing matrices in this function: The input matrix in and the transposed
matrix out. The matrix dimensionality is de" ned as nx rows by ny columns. The result of the trans-
pose operation when implemented on a 1D array is illustrated in Figure 4-24.

1 2 3 40 11 22 33 44 55 66 77 88 9 10 11

4 8 1 50 44 88 11 55 99 22 6 10 3 7 11

data layout of original matrix

data layout of transposed matrix

FIGURE 4-24

Observing the input and output layouts, you will notice:
 ➤ Reads: accessed by rows in the original matrix; results in coalesced access.

 ➤ Writes: accessed by columns in the transposed matrix; results in strided access.

Matrix transpose problem

180 ❘ CHAPTER 4 GLOBAL MEMORY

c04.indd 08/19/2014 Page 180

Matrix Transpose Problem
Matrix transpose is a basic problem in linear algebra. While basic, it is used in many applications.
Taking the transpose of a matrix implies exchanging each row with the corresponding column.
Figure 4-23 illustrates a simple matrix and its transpose.

0
0

1

1

2

2

3

3

4

4

5 6 7
5

6

7

8 9

matrix
transposed

10 11

8

9

10

11

FIGURE 4-23

The following is a host-based implementation of an out-of-place transpose algorithm using single-
precision ! oating-point values. Suppose the matrix is stored in a 1D array. The transpose can be
easily calculated by transforming array index values to reverse row and column coordinates.

void transposeHost(float *out, float *in, const int nx, const int ny) {
 for (int iy = 0; iy < ny; ++iy) {
 for (int ix = 0; ix < nx; ++ix) {
 out[ix*ny+iy] = in[iy*nx+ix];
 }
 }
}

There are two 1D arrays storing matrices in this function: The input matrix in and the transposed
matrix out. The matrix dimensionality is de" ned as nx rows by ny columns. The result of the trans-
pose operation when implemented on a 1D array is illustrated in Figure 4-24.

1 2 3 40 11 22 33 44 55 66 77 88 9 10 11

4 8 1 50 44 88 11 55 99 22 6 10 3 7 11

data layout of original matrix

data layout of transposed matrix

FIGURE 4-24

Observing the input and output layouts, you will notice:
 ➤ Reads: accessed by rows in the original matrix; results in coalesced access.

 ➤ Writes: accessed by columns in the transposed matrix; results in strided access.

180 ❘ CHAPTER 4 GLOBAL MEMORY

c04.indd 08/19/2014 Page 180

Matrix Transpose Problem
Matrix transpose is a basic problem in linear algebra. While basic, it is used in many applications.
Taking the transpose of a matrix implies exchanging each row with the corresponding column.
Figure 4-23 illustrates a simple matrix and its transpose.

0
0

1

1

2

2

3

3

4

4

5 6 7
5

6

7

8 9

matrix
transposed

10 11

8

9

10

11

FIGURE 4-23

The following is a host-based implementation of an out-of-place transpose algorithm using single-
precision ! oating-point values. Suppose the matrix is stored in a 1D array. The transpose can be
easily calculated by transforming array index values to reverse row and column coordinates.

void transposeHost(float *out, float *in, const int nx, const int ny) {
 for (int iy = 0; iy < ny; ++iy) {
 for (int ix = 0; ix < nx; ++ix) {
 out[ix*ny+iy] = in[iy*nx+ix];
 }
 }
}

There are two 1D arrays storing matrices in this function: The input matrix in and the transposed
matrix out. The matrix dimensionality is de" ned as nx rows by ny columns. The result of the trans-
pose operation when implemented on a 1D array is illustrated in Figure 4-24.

1 2 3 40 11 22 33 44 55 66 77 88 9 10 11

4 8 1 50 44 88 11 55 99 22 6 10 3 7 11

data layout of original matrix

data layout of transposed matrix

FIGURE 4-24

Observing the input and output layouts, you will notice:
 ➤ Reads: accessed by rows in the original matrix; results in coalesced access.

 ➤ Writes: accessed by columns in the transposed matrix; results in strided access.

void transposeHost(float *out, float *in, const int nx, const int ny) {
for (int iy = 0; iy < ny; ++iy) {
for (int ix = 0; ix < nx; ++ix) {
out[ix*ny+iy] = in[iy*nx+ix];
}

 }
}

CUDD Matrix transpose

182 ❘ CHAPTER 4 GLOBAL MEMORY

c04.indd 08/19/2014 Page 182

 if (ix < nx && iy < ny) {
 out[iy*nx + ix] = in[iy*nx + ix];
 }
}

__global__ void copyCol(float *out, float *in, const int nx,
 const int ny) {
 unsigned int ix = blockDim.x * blockIdx.x + threadIdx.x;
 unsigned int iy = blockDim.y * blockIdx.y + threadIdx.y;

 if (ix < nx && iy < ny) {
 out[ix*ny + iy] = in[ix*ny + iy];
 }
}

(ix,iy)

)(iy,ixx

ix = threadIdx.x + blockIdx.x * blockDim.x

block width

nx

nx

iy

ix

ny

ny

iy
 =

 t
hr

ea
dI

dx
.y

 +
 b

lo
ck

Id
x.

y
*

bl
oc

kD
im

.y

FIGURE 4-26

The main program for calling these upper and lower bound kernels is provided in Listing 4-6. You
can also download the full source in transpose.cu from Wrox.com. Note that a kernel identi! er
iKernel is used to select which kernel to run in this example using a switch statement at the bot-
tom of main.

LISTING 4-6: Matrix transpose (transpose.cu) (main function only listed)

int main(int argc, char **argv) {
 // set up device
 int dev = 0;
 cudaDeviceProp deviceProp;
 cudaGetDeviceProperties(&deviceProp, dev);
 printf("%s starting transpose at ", argv[0]);

__global__
void tranposeRow(float *out, float *in, const int nx, const int ny) {

unsigned int ix = blockDim.x * blockIdx.x + threadIdx.x;
unsigned int iy = blockDim.y * blockIdx.y + threadIdx.y;

if (ix < nx && iy < ny) { out[iy*nx + ix] = in[iy*nx + ix];}
}

__global__
void tranposeCol(float *out, float *in, const int nx, const int ny) {

unsigned int ix = blockDim.x * blockIdx.x + threadIdx.x;
unsigned int iy = blockDim.y * blockIdx.y + threadIdx.y;

if (ix < nx && iy < ny) { out[ix*ny + iy] = in[ix*ny + iy]; }
}

32X32

copyRow: Load/store using rows 376.32 41.81

copyCol: Load/store using cols 170.14 18.90

Effective Bandwidth of Kernels

BLOCKSIZE KERNEL BANDWIDTH [GB/s] RATIO TO PEAK BANDWITDH (%)

Theoretical peak bandwidth 900.0

16 X16

copyRow: Load/store using rows 626.60 69.62

copyCol: Load/store using cols 275.42 30.60

Naive Transpose: Reading Rows versus Reading Columns

__global__
void tranposeNRow(float *out, float *in, const int nx, const int ny) {

unsigned int ix = blockDim.x * blockIdx.x + threadIdx.x;
unsigned int iy = blockDim.y * blockIdx.y + threadIdx.y;

if (ix < nx && iy < ny) { out[ix * ny + iy] = in[iy * nx + ix]; }
}

__global__
void tranposeNCol(float *out, float *in, const int nx, const int ny) {

unsigned int ix = blockDim.x * blockIdx.x + threadIdx.x;
unsigned int iy = blockDim.y * blockIdx.y + threadIdx.y;

if (ix < nx && iy < ny) { out[iy*nx + ix] = in[ix*ny + iy]; }
}

BLOCKSIZE KERNEL BANDWIDTH [GB/s] RATIO TO PEAK BANDWITDH (%)

Theoretical peak bandwidth 900.0

16 X16

copyRow: Load/store using rows 273.09 30.34

copyCol: Load/store using rows 296.09 32.90

Unrolling Transpose: Reading Rows versus Reading Columns

__global__ void transposeUnroll4Row(float *out, float *in, const int nx,
const int ny) {
	 unsigned int ix = blockDim.x * blockIdx.x*4 + threadIdx.x;
	 unsigned int iy = blockDim.y * blockIdx.y + threadIdx.y;
	 unsigned int ti = iy*nx + ix; unsigned int to = ix*ny + iy;
	
	 // access in columns
	 if (ix+3*blockDim.x < nx && iy < ny) {
	 	 out[to] = in[ti];
	 	 out[to + ny*blockDim.x] = in[ti+blockDim.x];
	 	 out[to + ny*2*blockDim.x] = in[ti+2*blockDim.x];
	 	 out[to + ny*3*blockDim.x] = in[ti+3*blockDim.x];
	 }
}

__global__ void transposeUnroll4Col(float *out, float *in, const int nx,
const int ny) {
	 unsigned int ix = blockDim.x * blockIdx.x*4 + threadIdx.x;
	 unsigned int iy = blockDim.y * blockIdx.y + threadIdx.y;
	 unsigned int ti = iy*nx + ix; unsigned int to = ix*ny + iy;

	 // access in columns
	 if (ix+3*blockDim.x < nx && iy < ny) {
	 	 out[ti] = in[to];
	 	 out[ti + blockDim.x] = in[to+ blockDim.x*ny];
	 	 out[ti + 2*blockDim.x] = in[to+ 2*blockDim.x*ny];
	 	 out[ti + 3*blockDim.x] = in[to+ 3*blockDim.x*ny];
	 }
}

32X32

NaiveRow: Load/store using rows 160.73 17.86

NaiveCol: Load/store using rows 492.21 54.69

Effective Bandwidth of Kernels

BLOCKSIZE KERNEL BANDWIDTH [GB/s] RATIO TO PEAK BANDWITDH (%)

Theoretical peak bandwidth 900.0

16 X16

NaiveRow: Load/store using rows 317.29 35.25

NaiveCol: Load/store using rows 742.74 82.53

GPU is throughput Horsepower

Offer fast memory access and significant computing power
Importance of compute intensity and memory access patterns

Minimize the available data

Wasting bandwidth can severely impact performance
Use structured arrays and maintain proper data order

Optimizing Performance

About 75% of issues in code adaptation stem from memory access problems
Techniques for improving occupancy and latency hiding

Advanced Techniques

Efficient use of shared memory
Utilizing CUDA streams for concurrent execution

Take away message

Extra-Slide

GPU Memory Hierarchy

Global Memory

Large, off-chip memory with high latency
and lower bandwidth compared to shared
memory.

Shared Memory

Small, on-chip memory shared by all
threads within a thread block, offering low
latency and high bandwidth.

Register Memory

Private memory for each individual
thread, with the fastest access but limited
capacity.

Shared Memory Basics

Low Latency

Shared memory has much lower access latency
compared to global memory, allowing for faster data
processing.

High Bandwidth

Shared memory offers significantly higher
bandwidth, enabling more efficient data transfer
between threads.

Limited Capacity

Shared memory is limited in size, typically ranging
from 16KB to 96KB per Streaming Multiprocessor
(SM).

Thread Block Scope

Shared memory is shared among all threads within a
thread block, allowing for efficient inter-thread
communication.

Declaration

The __shared__ qualifier is used to declare shared memory
variables in CUDA kernels

Scope

Shared memory variables are only accessible to threads
within the same thread block

Thread Sync

Threads in a thread block can synchronize using the __syncthreads() intrinsic
Synchronization enables safe data exchange between threads within a block.

The __shared__ Qualifier

Shared memory matrix multiplication kernel
__global__ void sharedMemoryMatrixMultiplicationKernel(float* M, float* N, float* P, int Width) {
 __shared__ float sharedM[BLOCK_SIZE][BLOCK_SIZE]; __shared__ float sharedN[BLOCK_SIZE][BLOCK_SIZE];
 int row = blockIdx.y * blockDim.y + threadIdx.y; int col = blockIdx.x * blockDim.x + threadIdx.x;

 float sum = 0.0f;
 for (int m = 0; m < (Width + BLOCK_SIZE - 1) / BLOCK_SIZE; ++m) {
 // Load elements into shared memory
 if (m * BLOCK_SIZE + threadIdx.x < Width && row < Width) {
 sharedM[threadIdx.y][threadIdx.x] = M[row * Width + m * BLOCK_SIZE + threadIdx.x];
 } else {
 sharedM[threadIdx.y][threadIdx.x] = 0.0f; // Fill with zero if out of bounds
 }

 if (m * BLOCK_SIZE + threadIdx.y < Width && col < Width) {
 sharedN[threadIdx.y][threadIdx.x] = N[(m * BLOCK_SIZE + threadIdx.y) * Width + col];
 } else {
 sharedN[threadIdx.y][threadIdx.x] = 0.0f; // Fill with zero if out of bounds
 }

 __syncthreads(); // Synchronize to make sure all threads have loaded their data

 // Perform the multiplication
 for (int k = 0; k < BLOCK_SIZE; ++k) {
 sum += sharedM[threadIdx.y][k] * sharedN[k][threadIdx.x];
 }
 __syncthreads(); // Synchronize before loading the next tile
 }
 // Write the result to global memory
 if (row < Width && col < Width) {
 P[row * Width + col] = sum;
 }
}

Two matrix multiplication on GPU

N Methods Time execution Speedup

2048x2048

Serial 25.18 1

CUDA 0.063 398.29

Shared memory 0.055491 453.92

