CUDA Deep Dive: From Fundamentals to

Advanced Techniques

Nitin Shukla

HPC Application Engineer

October 27th 2024

T ERPICURE CINECA

Contents: topics explored

Why heterogeneous computing?

Grasping the basic elements of GPU programming

CUDA programming mode

2
Kernel launch, Thread and Memory hierarchy
Performance consideration
3
Memory management, analysis Nsight and Nvidia
Streams and Concurrency
4

Overlapping kernel execution & data transfer on Single/Multi GPU

CINECA

Computer architecture drives parallelism at the core level

------ ------

‘ Bus |

Most modern processors implement Parallel computing two core technologies
Memory (instruction memory and data memory) Computer architecture i.e Hardware aspect
Central processing unit (control unit and arithmetic logic unit) Parallel programming i.e Software aspect

Input/Output interfaces

CINECA

Computer architecture drives parallelism at the core level

Fundamentals types of parallelism

« Task parallelisms: multiple independent tasks can run simultaneously, .
o | | Graphics
distributing functions across multiple cores

« Data parallelisms: multiple data items can be processed

GPU
Parallel Computing

simultaneously, distributing the data across multiple cores

Heterogeneous computing CPU

Sequential Computing

Parallelism from low to high

« CUDA programming: well-suited to address problems that can be

expressed as data-parallel computations
Data size from small to large

CINECA

How GPUs are different than CPUs?

Control

-

B
B

PCle Bus
< >

CPU (host): minimize latency GPU(Device): maximize throughput

CINECA

Why computing pert/Watt matters?

Traditional CPUs are not economically feasible GPU-accelerated computing started a new era

2.3 PFlops 7000 homes

CPU GPU Accelerator

Optimized for Optimized for Many
Serial Tasks Parallel Tasks

EEEEEEEE EEEEEEEn
N EEEEEEEE
EEEEEEEE EEEEEEE.
() ([[) ()))))
il i e O i i |
EREEEEEE EEEEEEEN
OO00O00O0000 OOO0OC0OO0Om.
COOO0000O00 OOO0aC00O0m
)) (Y) [Y (A))))
) Y () (6 () (Y ()) () () () (5 ()
(B (O (T T (T [(T (T]
EREEEEEN RN
OO O00O0C00O000 OOOaC O 0e
(] T () T [[T ()))
[() () ([([Y) [

7.0 7.0
Megawatts Megawatts

CINECA

GPU architecture

GPU architecture is built around a scalable array of SM

CUDA cores

Shared Memory/L1 Cache
Reqister File

Load/Store Units

Special Function Units
Warp Scheduler

INT32 INT32

INT32 INT32

INT3Z INT32

INTIZ INT32

INTSZINI 32

INTS2 NI 32

INT32INT32

INT32INT22

LD/ LD
ST ST

'

INT32INT32

INT32INT32

INT32 INT32

INT32 INT32

INT32 INTS2

INT3Z INT 32

INT3I2INTA2

INISZIN) 32

LD/

ST

LD Instruction Cache
Waip Scheduler (32 thiwad/clk)
Dispatch Unit [32 thread/elk)

Regieter File (16,384 x 32 bit)

L1 Instruction Cache

~ LDInstruction Cacr
Warp Scheduler (32 threadiclk)
Dispateh Unit (32 thread/c k)

Register File (16,384 x 32 -bit)

FR32 FPaz

Fp32 roaz

FP32 FPa2

FR32 FP32

FHE32 FPaz

FB32 FP37

FR32 FP33

FR32 FPaz

LV LLCY
5T ST

Loy
ST

FPB4

FPe4

FPO4

FFDa

FPR4

FPBA

FPB4

LD,
5T

TENSUOR CORE

LD¥ s
ST ST SFL

INT32INTI2

INT32 INTI2

INT3Z INTS2

INT3ZINTS2

INISZINISZ

INTXZINIS2

INT3I2INT32

INT32INT22

LC/Y Ly
ST ST

FP32 FPa2

rraz reaz

FP3zZ FP32

FP32 FP32

FHAZ P32

FPA2 FP32

FP32 FP32

FP32 FPaz

LD LD
ST ST

Lo
Pt

FP&4

rre4

FP84

FFha

FPha

FP5a

FP&4

LD
ST

TENSOR CORE

LD LoV
ST ST SFu

- L0 mstruction Cache
Werp Scheduler (32 thread/clk)
Dispatch Unit [32 thread/clk)

Register File (16,384 x 32-bit)

- L0 Instruction Cathe
Wearp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/cik)

Register File (16,384 x 32-bit)

FA32 ¥933

FR32 FP32

FP32 FRag

FP32 FP32

FP32 FP3z2

FP32 FPl2

FP32 FP22

FH32 FPa2

TENSOR CORE

Tox

INTI2INT32

INT32INT32

INT32INT32

INT32 INTI2

INT32 INT32

INTIZ INTI2

INT3Z2INTI2

INI3IZINI32Z

Ly LD

&T eT

FP32 FP33

FP32 FP32

FP32 FPaz

rraz reaz

FP3z2 FP32

FP3z FP32

FP32 FP32

FP3z FP32

LDy L¥
eT ST

 192KB L1 Data Cache ! Sharad Memory

Tex

Loy

-
<

kP51

FP&4

FP&4

rre4

FPO4

FP6d

FPad

FPba

LD,
eT

TENSOR CORE

LD!
=T

CINECA

Latency Hiding

warp 0 waiting while SM still busy
S E———

no eligible warps to
execute

Time

CINECA

GPU acceleration for data-parallel tasks

Two important features that describe GPU capability GPU Accelerators

« Number of CUDA cores
« Memory size

GPU Performance Metrics: Throughput vs. Latency

« Peak computational performance
measures in Tflops or Pflops, reflects a device's ability to perform floating-
point calculations rapidly and efficiently

« Memory bandwidth
the rate at which data can be transferred between the CPU and memory, L2 Cache
measured in gigabytes per second (GB/s). It directly impacts the speed of

data-intensive applications. DRAM

I| ARRRNRRARRR

CINECA

NVIDIA Tesla A100 with 54 Billion Transistor

With 7nm technologies

19.5 teraflops of FP32 performance

6912 CUDA cores, 40GB of graphics memory, and 1.6TB/s of graphics memory bandwidth
The A100 80GB model announced in Nov 2020, has 2.0TB/s graphics memory bandwidth

CINECA

TOP10 System - November 2023

FRipaitih

1. Frontier ORNL

AMD CPUs
AMD GPUs
HPE Slingshot
1679 pflops

2. Aurora ANL

Intel CPUs
Intel GPUs
HPE Slingshot
1059 ptlops

3. Eagle Microsoft

Intel CPUs
Nvidia GPUs
Nvidia Inf
846 pflops

4. Fugaku RIKEN

Fujitsu ARM

Fujitsu Tofu
537 pflops

5. Lumi CSC

AMD CPUs
AMD GPUs
HPE Slingshot
531 pflops

70 % of FLOP/s by GPUs, > 100 000 GPUs in Frontier+Aurora

6. Leonardo CINECA

Intel CPUs
Nvidia GPUs
Nvidia Inf
304 pflops

GPUs serve as a co-processor, not a standalone platform

Device

GPU

Compute intensive portion

| <€

4)
. J

>

Sequential portion *

CPU

1SOH

CINECA

Ways to parallels an applications on Nvidia GPUs

Applications

Increasing programming effort

Libraries OpenACC/QpenMP CUDA
Directives
Drop-in Acceleration Easy Accelerations Maximum Flexibility
[| T
Productivity Portability Performance

CINECA

SYCL / ONE
HACKATHO
@ CINECA

Empowering the Future of High- Perfor

Computing with SYCL NN I, S \./ < .nll" & ,
S Register now'

CINECA intel.

AN

Follow the link: ... or scan the QR code For further info / questions:
https://hpc- a.masini@cineca.it
portal.eu/node/2190

Why CUDA?

Performance

« Massive Parallelism: scale to 1000’s of cores, 10000000’s of parallel thread

« Massive Gain: substantial performance improvements in tasks that can be divided into smaller, concurrent operations

Scalability
Efficiently maps to the GPU architecture: well-suited for leveraging GPU capabilities

- Wide Range of Hardware: applications can scale from small embedded devices to large supercomputers

Flexibility
- Programming Languages: supports various programming languages

- Easy to use: let programmers strip away complexity associated with parallel computing and focus on parallel algorithms

CINECA

What 1s CUDA?

CUDA : Compute Unified Device Architecture
CPU

- Enable heterogeneous systems (i.e., CPU+GPU) Applications

« A new architecture instruction set called PTX (Parallel Thread eXecution)
to match GPU typical hardware

- Parallelism allows developers to use GPUs for general purpose processing CUDA Libraries

(GPGPU)

CUDA Runtime

The SDK includes

CUDA Driver
A Drivers, runtimes and API

Compiler wrappers for complain coda code (nvcc)

Libraries (cuBLAS, cuFFT, cuSolver) debuggers (cuda-gdb, cuda-memcheck), GPU
profilers (nvprof, nView), etc

CUDA-aware languages C/C++, Fortran, PyCUDA, CUDA.JI

CINECA

CUDA execution model

CUDA programmer perspective

- Heterogenous computing: combination of CPU and GPU
- Host: The CPU and its memory
- Device: The GPU and its memory

- Execution: Programs run a on the host and launch parallel code (kernels) on the device
by many threads

Programming model view

- Kernels: A function written in CUDA C/C++ and executed on the GPU
« Launch configurations:

- Threads: Smallest unit of execution in CUDA

- Block: A collection of threads

- Grid: A collection of blocks

- Memory management: Allocate and transfer data between host (CPU) and device (GPU)

C Program
Sequential
Execution

Serial code

Parallel kernel
Kemell<<<>>>()

Serial code

Paralle| kernel
Kernell < <<>>>()

Device
Grid 0

Block (0, 0) Block (1,0) Block (2, 0)

Block (0, 1) Block(l, 1) Block(21)
s S

Host %

Device
Grid 1

Block (0, 1) Block (1, 1)
Block (0, 2) Block (1, 2)

i

CINECA

Compiling and running CUDA enable application

CUDA enhances your control over memory and thread hierarchies, optimizing execution and scheduling with:

Thread hierarchy structure Memory hierarchy structure

cudaMalloc
cudaMemcpy
cudaMemset
cudaFree

<€

CINECA

Embarrassing parallel code

Vector Addition // CPU function
« Simple operation: a memory-bound operation sumArraysOnHost (float *A, float *B, float *C, const int N)
_ _ { for (int i1idx=0; 1dx<N; idx++)
- Natural Fit for GPUs: Each element of a vector are C[idx] = A[idx] + B[idx];
independent }
. Scalability: Larger vectors benefit from GPU or int main(int argc, char **argv)
{

multi-core CPU parallelism, offering faster

computation than serial processing. Steh = cptEeceTd()

sumArrayOnCPU(h A, h B, h C, N);
Double cpuTime = cpuSecond() - start;

printf (“CPU Execution Time: %f second \n”, cpuTime);

CINECA

Declaring Host-Called, Device-Executed Functions

CUDA differentiates between these functions by using one of the following function type qualifiers as a prefix

* _global__ qualifier for kernels that can be invoked globally
e host functions called from host and executed on the host

« device functions called from device and execute on the device (a function that is called from a kernel needs the
__device__ qualifier)

CINECA

Step to Launching a CUDA Kernel

__global__ void() // Kernel
__global__

sumArraysOnDevice(float *A, float *B, float *C, const int N)

Defines a kernel
can be invoked globally either from CPU or GPU

\ Y {
int idx = threadIdx.x + (blockIdx.x * blockDim.x)
if(idx<N)
Clidx] = A[idx] + B[idx];
}
4)

Execution configuration . C
int main(int argc, char **argv)
Kernel_name <<<numBlocks, numThreads>>> (arguments); {

Specifies grid and block dimensions

start = cpuSecond();
sumArraysOnGPU<<<gridSize, blockSize>>>(d_A, d_B, d_C, N);

cudaDeviceSynchronize();

- ~ double gpuTime = cpuSecond() - start;

Synchronization printf("GPU Execution Time: %f seconds\n", gpuTime);

Launching kernel is asynchronous
cudaDeviceSynchronize(): wait until device code completeness 1

CINECA

CUDA launches arrays of parallel threads

A block has a fixed number of threads which are guaranteed
to be running simultaneously on the same SM

CCCCCC

CUDA launches arrays of parallel threads

For fully utilisation of the parallel processing power of the GPU

A CUDA kernel is executed as a grid (array) of
threads

- All threads in a grid run the same kernel code

-6 & k3
C C C C

float x = input[threadIdx.x];

threadIdx. X

Each thread has a unique ID: threadldx

o float y = fun(x);
- Threads are similar to data-parallel tasks.

- Threads independently execute the same output[threadldx.x] = y;

. _ J
operation on a data subset
- Follows SPMD model i.e the Single Program
Multiple Data => SIMT Single Instructions Multiple
threads

CINECA

SIMT VS. SIMD execution model

Both SIMD and SIMT achieve parallelism by broadcasting a single instruction to multiple execution units

Consider how computations will be distributed between threads for the following loop (N >> threads count):

{ float *A, *B, *C = ... ; for (int I = @; I <N; I++) A[I] = B[I] + C[I] }

doi= 1,16

C[i] = A[i] + B]
« SIMD describes a class of instructions which perform the end do

same operations on multiple registers simultaneously Scalar instructions

. . . 32 loads

« Converting an algorithm to use SIMD is usually called |6 adds

“Vectorizing” |6 stores

« a SIMD register (or a vector register) can hold many values

(2 - 16 values or more) of a single type SIMD instructions

. . . . 8 load
« Vectorisation helps you write code which has good access 4 adds

patterns to maximise bandwidth 4 stores

ENENEEEENEENNN .
lllllll*llllllll

Vector length l

—>

ﬂiﬂ SEE

0 o ill LI

CINECA

SIMT VS. SIMD execution model

Both SIMD and SIMT achieve parallelism by broadcasting a single instruction to multiple execution units

A loose extension of SIMD which is what CUDA’s computational model is,

although there is key differences SIMT thread registers
- Single instruction, multiple registers
. J . . p . all] a[I+1] a[I+2] a[I+3]
- Single instructions multiple addresses
..e. parallel memory access!
- Single instruction, multiple flow paths ofel | allkat] 9|[#2] e
If statements are allowed!
a 2 2 a
SIMT allows b b b b
- CUDA GPU to perform “vector” computations on scalar cores
- Much easier to vectorise than getting compiler to autovectorize on CPU I I+1 I+2 I+3

https://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html

CINECA

SIMT VS. SIMD execution model

Both SIMD and SIMT achieve parallelism by broadcasting a single instruction to multiple execution units

Feature SIMD SIMT

Architecture Traditional CPUs Utilized by NVIDIA GPUs
Execution Unit Multiple data lanes Multiple threads (warps)
Flexibility Low High

Branch Handling No support for divergence Supports thread divergence

Homogeneous data operations
Best Suited For Dynamic control flow applications

Common Usage CPU computing Vector processing on GPUs

CINECA

CUDA launches arrays of parallel threads

G w3

The block of threads is broken up into “warps” of 32 threads

A “warp” is the vector element of the GPU

k J \ J 44444q" k J \ J k

\, J

1444449 1444449 P> 1499944 1449499 1444449 j
thread 0.31 thread 32...63 thread 96...127 thread 128...159 thread 160...191

CINECA

What Is warp, and why is it
Important?

ot UL IHERRRTRCOED 0

What 1s WARP?

Hardware Multithreading

Warp Scheduler Warp Scheduler

 NVIDIA SM schedules threads in warps (groups of

32 threads) Instruction Dispatch Unit Instruction Dispatch Unit

L ehoiod togother to evecute the ama UL L
scheduled together to execute the same
instructions in lockstep. Warp 8 instruction 11 Warp 9 instruction 11

e Execution contest stays on chip Warp 2 instruction 42 Warp 3 instruction 33
* No overhead for switching warps Warp 14 instruction 95 Warp 15 instruction 95

e Volta SM has 4 warp schedulers, each one is

responsible for

Warp 8 instruction 12 Warp 9 instruction 12
- feeding 32 CUDA cores
- 8 load/store units Warp 14 instruction 96 Warp 3 instruction 34

- 8 special functions unit Warp 15 instruction 96

time

Warp 2 instruction 43

\/

CINECA

Warps as Scheduling Units

Execution

Hardware view

Logical view

32 threads

SRS ERRNSISNIN

o
O
O
-
—
O
o
e
Z
O
O

Thvead 14| I el

32 threads

NEOSNONNNNNN
NENNNNYINNNNNN_

NANNNNNON
NNNENNNYN
SENNNNRENDIN

NENNONNONNNNNNN

NOENNNONNNOSN
NTRNNNNNNNONEN
YTNNNNNNNDRNSEN
NN INININININININININ
NONENONNNNNYNN
NNNNNNNNNNNN
AR VINININ NIRRT RN
NSRNNONNNNNNNYTN
NENNNNNNNNNN

RERRR
R

data

32 threads
32 threads
32 threads

—>

Multiprocessor

Warps

Thread Block

thread 31
thread 63
thread 95
thread 127

2,

thread 34,
thread 66,
thread 98,

1, thread

thread 33,
thread 65,
thread 97,

0, thread

thread 32,
thread 64,
thread 96,

thread

Warp O
Warp 1:
Warp 3
Warp 4:

programming model

Groups (vectors) of 32 consecutive threads of a block that are executed in parallel in hardware

 An implementation technigue, not part of the CUDA

e pbasic unit of execution in an SM

CINECA

Why do we need to have so many warps in an SM?

Latency hiding

 Memory Access Latency: Multiple warps can hide memory access latency by switching to another ready warp when one warp is waiting for data

 Instruction Pipeline Latency: Keeps the execution units busy while other warps are stalled due to dependencies or resource constraints

Resource Utilisation

« Maximizing Throughput: More warps allow for better utilization of SM resources (ALUs, memory bandwidth)

* Load Balancing: Distributes the workload evenly across the available execution units

Parallelism

« Enhancing Parallel execution: Multiple warps increase the parallelism, enabling more threads to be processed concurrently

* Improved Performance: Higher parallelism leads to better performance and throughput for data-intensive applications

CINECA

GPU Thread hierarchy

ot UL IHERRRTRCOED 0

GPU Thread hierarchy

GPU consists of Hundreds of thousands of grids

Block 1024 threads

by B
‘Warp ‘Warp
(49444 CLI941%:

& »
< »

LK
(Warp 1024/32 = 32 warps
449999

TEH
Gonmr
414999

CINECA

Kernel execution across hread, Block and Grid

e In order to compute N elements on the GPU
In parallel, at least N concurrent threads must

(Thread € Block € Grid)

be created on the device
Block O

e GPU threads are grouped together in teams
or blocks of threads

Thread O

Thread 1

Thread 2 e Threads belonging to the same block or team
can cooperate togheter exchanging data
through a shared memory cache area

Thread 3

Thread 4

e Each block of threads will be executed
iIndependently

e No assumption is made on the blocks
execution order

CINECA

Kernel execution across hread, Block and Grnd

gridDim.x: number of blocks in the grid, in this case 2

GPU
performWork<<<2,4>>>()

CINECA

Kernel execution across hread, Block and Grnd

blockIdx.x: index of a blocks in a grid
blockDim.x: number of threads per block

GPU
performWork<<<2,4>>>()

blockDim. x

11
S

blockIdx.Xx blockIdx.x = 1

11
o

CINECA

Kernel execution across hread, Block and Grnd

threadldx.x: index of the thread with a block

GPU
performWork<<<2,4>>>()

CINECA

Kernel execution across hread, Block and Grid

Choose the optimal block size

- A limited number of threads (1024) can fit inside a thread block
- Jo increase parallelism, we need to coordinate work among thread blocks.

- This is achieved by mapping element of data vector to threads using global index =threadldx.x + blockldx.x*blockDim.x

threadIdx.x threadIdx.x

0/112(3[4(5/6|7|0(1(2(3|4|5|6]|7

\ A J
Y Y
blockIdx.x = 2 blockIdx.x = 3
for blockIdx.x = 0 for blockIdx.x = 3
i=0%*8 + threadIdx.x ={ 0, 1, 2, ... , 7 } i=0%*8 + threadIdx.x ={0, 1, 2, ... , 7 }

CINECA

Grid size larger than data set

GPU

DATA

0 4 Code must check that the dataIndex
calculated by threadIdx.x +
blockIdx.x * blockDim.x IS less

1 XT than N, the number of data elements.

GPU

performWork<<<z, 4>>>()

1

0
1 3
—

CINECA

Choosing the optimal grid size

Choose the optimal block size Know your limitations

« Write an execution configuration that creates more threads than Maximum size at each level of the thread hierarchy is device dependent.
necessary On A100 typical you get:

« Pass a value as an argument into the kernel (N) that represents that « Maximum number of threads per block : 1024
total size if the data set to be processed/total threads needed to « Maximum sizes of x-, y-, and -z dimensions of threads block 1024 x
complete the work 1024 x 64

« Calculate the global index and if it does not exceed N perform the « Maximum sizes of each dimension of grid of thread blocks: 65535 x
kernel work 65535 x 65535 (about 280,000 billion blocks)

// Coalesced access example

__global vectorSum(int N)
total vector elements < total threads
int idx = threadIdx.x + blockIdx.x * blockDim.x: < >|

{ Block O Block 1 Block 2 Block 3

if(idx < N){ // only do work if it does}

A grid with 4 blocks

CINECA

Every thread runs exactly the same program

E . R

A limited number of threads (1024) can fit inside a thread block

I

To increase parallelism, we need to coordinate work among thread blocks

This is achieved by mapping element of data vector to threads using global index

int index = threadIdx.x + (blockIdx.x * blockDim.Xx)

I

All about this one line code

CINECA

Transparent scalability

Device Kernel grid Device
/ Block O Block 1 \
Block 2 Block 3
Block O Block 1
Block 4 Block 5 o Block O Block 1 Block 2 Block 3
S
|_
Block 6 Block 7
Block 2 Block 3 Block 4 Block 5 Block 6 Block 7
User workload of 8 Blocks
Block 4 Block 5 :
Each block can execute GPU with 4 SM
In any order relative to
Block 6 Block 7 other blocks
GPU with 2 SM

CINECA

Mapping to hardware

] CUDA invokes kernel grid

Software Hardware
Host kicks off the execution of a kernel grid which
contains blocks of threads -
Thread CUDA Core
l N
[]
BHENENE
2 Execute concurrently W H
-
Each SM runs multiple thread blocks EEEE
Each SP runs on thread from a thread blocks Thread Block =
SM

- [l Wl S

Global memory shared by all SMs Grid

Device

CINECA

Compiling and running CUDA enable application

CUDA enhances your control over memory and thread hierarchies, optimizing execution and scheduling with:

Thread hierarchy structure Memory hierarchy structure

cudaMalloc
cudaMemcpy
cudaMemset
cudaFree

<€

CINECA

Three simple processing steps

PCle or NVLink Bus
R

] Copy input data from CPU memory to GPU

CINECA

Three simple processing steps

|l
|

PCle or NVLink Bus

CPU Memory

] Copy input data from CPU memory to GPU

2 Load GPU program and execute caching data on
chip for performance

CINECA

Three simple processing steps

PCle or NVLink Bus
— o

] Copy input data from CPU memory to GPU

2 Load GPU program and execute caching data on
chip for performance

3 Copy results From GPU to CPU memory

CINECA

Data movement

3

Copy host to Device

Copy Device to host

Clean up memory for host and device

/| Copy data from host to device

checkCuda(cudaMemcpy(d_A, h_A, size,
cudaMemcpyHostToDevice));
checkCuda(cudaMemcpy(d_B, h_B, size,
cudaMemcpyHostToDevice));

// Copy result from device to host

checkCuda(cudaMemcpy(h_C_ref, d_C, size,

cudaMemcpyDeviceToHost));

// Clean up memory
checkCuda(cudaFree(d_A));

C
C
C

heckCuda(cudaFree(d_B));
neckCuda(cudaFree(d _C));

eanup(h_A, h_B, h_C, h_C_ref);

CINECA

How to compile CUDA enable application?

.
1

CUDA components

1 CUDA Dnriver

A critical piece of software that acts as the interface
between your application and the NVIDIA GPU
hardware

> The CUDA Toolkit

NVHPC Compiler: translate CUDA into optimised machine
instructions for NVIDIA GPUs

Libraries: Comprehensive libraries like cuBLAS and cuDNN
are provided

Debugging tools: robust debugging tools

CUDA Libraries | Integrated CPU+GPU Code |
CUDA Compiler I

CPU Host Code |
CUDA Driver | Debugger | : |
& Runtime Profiler C Compiler

CUDA Assembly
for Computing (PTX)

GPU

CPU

CINECA

CUDA components

] Compilation process

Code for host and device in some.cu file

CUDA compiler separates source code into host and
device components

Based LLVM open source compiler infrastructure

g Nnvcc —arch=sm_70 -0 out some-CUDA.cu -run

- arch: indicates for which architecture the files must
be compiled (sm_80 is for TESLA AT100 GPU)

- run: execute the successfully compiled binary

- Information on CUDA device: nvidia-smi, deviceQuery

CUDA C program

NVIDIA C compiler (NVCC)

3d0D 1SOH
300D =31A=(

Host C-preprocessor
compilers linker

Device JIT compiler

Heterogeneous computing platform

CINECA

2

Measuring performance and Error handling

1

Validate GPU results by comparing with CPU results

// Validate results

bool validateResults(float *hostRef, float *gpuRef, int nElem) {
bool correct = true;
for (int i = 0; 1 < nElem; i++) {
i1f (fabs(hostRef[1] - gpuRef[1]) > 1le-5) {
correct = false;

printf("Mismatch at index %d: CPU = %f, GPU = %f\n", i, hostRef[i], gpuRef[I]);

break;

}

}
if (correct) {
printf("Results match!\n”);
}
return correct;

}

CINECA

Kernel Launch Errors

Error handling in accelerated CUDA code is essential.

All CUDA API returns an error code of type cudaError t

> Special value cudaSuccess means that no error occurred

An error message can be printed with cudaGetErrorString

e

cudaError_t err;
err = cudaMallocManaged(&ea, N);
if(err |= cudaSuccess) { printf(“Error: %s \n”, cudaGetErrorString(err)); }

To check for errors occurring at the time of kernel launch, CUDA provides the cudaGetLastError function, which does

return a value of type cudaError t

e

someKernel <<<1, -1 >>>(); // - 1 is not a valid number of threads
cudaError_t err;

err = cudaGetLastError();

if(err |= cudaSuccess) { printf(“Error: %s \n”, cudaGetErrorString(err));}

CINECA

CUDA Error Handling Function

* A macro that wraps CUDA function calls for checking errors could be useful

e Can be wrapped around any function that returns a cudakError t

#include <stdio.h>
#include <assert.h>

inline cudaError_t checkCuda(cudaError_t result) {
if (result != cudaSuccess) {
fprintf(stderr, "CUDA Runtime Error: %s\n", cudaGetErrorString(result));
assert(result == cudaSuccess); }

return result; }

int main() {

/* The macro can be wrapped around any function returning
* a value of type cudaFError_t .

*/

checkCuda(cudaDeviceSynchronize())

}

CINECA

Asynchronous errors

To catch errors that occur in asynchronous part of the code (for example during the execution of an asynchronous
kernel), check the status returned by a subsequent synchronizing CUDA runtime API call, such as
cudaDeviceSynchronize.

cudaError_t asynchErr;
asynchErr = cudaDeviceSynchronize(); if (asynchErr != cudaSuccess)

1
printf("Error: %s\n", cudaGetErrorString(err));

CINECA

Timing your kernel

double cpuSecond() {
struct timespec ts;
timespec get(&ts, TIME UTC);
return ((double)ts.tv_sec + (double)ts.tv_nsec * 1.e-9);

¥

/* Measure time for CPU execution */

19.3 ms

double start = cpuSecond(); cudaMemcpy 17.8 ms
sumArraysOnCPU(h_A, h B, hostRef, nElem);
double cpuTime = cpuSecond() - start; GPU 2.9 ms

printf("CPU Execution Time: %f seconds\n", cpuTime);
time
/* Measure time for GPU execution

double start = cpuSecond();

sumArraysOnGPU<<<gridSize, blockSize>>>(d A, d B, d C, nElem);
checkCuda(cudaDeviceSynchronize()); // Ensure GPU kernel finishes
double gpuTime = cpuSecond() - start;

printf("GPU Execution Time: %f seconds\n", gpuTime);

CINECA

Measuring performance with events

An event in CUDA is essentially a GPU time stamp that is recorded at a user-specified point in time. The API calls that
create and destroy events, record events and convert timestamp difference into a floating-point value in milliseconds

How to time code using CUDA events

r

cudaEvent_t start, stop;
float time;
cudaEventCreate(&8estart);
cudaEventRecord(&stop);

cudaEventRecord(start, O);
kernel<<<grid, threads>>> (d_odata, d_idata, size_x, size_y, NUM_REPS);

// do some work on the GPU
cudaEventRecord(stop, O);
cudaEventSynchronize(stop);

cudaEventElapsedTime(&time, start, stop);
cudaEventDestroy(start);
cudaEventDestroy(stop);

CINECA

Time your kernels

1 <<20

1 << 24

] << 26

] << 29

Elapsed Time on Host

0.000757

0.00013451

0.052383

0.424363

Kernel Configuration

(4096, 256)

(4096, 256)

(524288, 128)

(524288, 128)

Elapsed Time on Device

0.000206

0.000447

0.001013

0.008173

Speed up [Second]

3.67

30.12

51.72

51.92

CINECA

3

Are there hardware constraints on threads per block and blocks per grid?

1

When the data set is larger than grid size?

Advantages of Grid-stride loops

« Scalability: handles any size of input data regardless of hardware
contains. It ensures all the data is processed

« Efficient resource utilisations: It allows the kernels to utilise all
available threads efficiently by feeding more jobs

« Simplicity: straight forward implementation, without needing any
complex logic to manage the devision of the work

// Coalesced access example
__global vectorSum(int N)
int i1dx = threadIdx.x + blockIdx.x * blockDim.x;
int gridStride = gridDim.x * blockDim.Xx;
{
if(idx < N){ // only do work if it does}

0 4 8 12 || 16 || 20 || 24 || 28
A

1 5 9 3)17 |/|21,| 25 || 29

2 6 10 18 || 22|/ | 26 || 30

3 7 11 19 ‘ 23 || 27 || 31

perfofmWoyk<<<2, 45>> ()

\

CINECA

Ways to improve your code

Types of Data transfer

Pageable and Pinned memory

Unified memory and Asynchronous Prefetching

Global memory reads/writes

Aligned and coalesced memory accesses that reduce wasted
bandwidth

Array of Structure versus Structure of Array

Overlapping Kernel and Data movement by using non-default

streams

Performance tuning

Parallelising higher dimensions-2D
Unrolling techniques
Matrix Transpose Problem

Shared memory

Data transfer impacts on performance

Cache Efficiency

Coalesing

Register Spiling

CINECA

Measuring performance with events

» CPU(32)

+ CUDA HW (0000:1d:00.0 - NVIDI oy
(+ 0.7% Kernels h

~ 100.0% sumArraysOnGPU
\ 100.0% sumAnaysOnGPUU}

[=

/~ 99.3% Memory)
66.0% HtoD memcpy

34.0% DtoH memcpy)
~ Threads (8)

CUDA API

D'ﬂ“ll’\' f\\l’\'kﬁ"\f‘

Important to minimise the transfer between the host and device

CINECA

Application Performance constraints

Roofline Model Compute Bound
Peak computing
. performance I
2y — . —
e Key Concept: Computational Intensity: o . ,
= , . .
o Defined as FLOP (floating-point operations) per byte of S :/ CorInputlng ceiling
memory transferred — /, ,
o)
o O [T~ SO~ |- T T T T T T T r— = - ~- === ==
e Latency Hiding: S | |
o Utilizing multiple warps on a Streaming Multiprocessor S:: : :
(SM) enables concurrent computation. LICC) | l
o While some warps wait for memory transfers, others can < | |
continue executing o | !
Ko I I
- i - © i " Algorithm2 ' .
Combined Performance: _% | Algorithm 1 | mgm / | Algorithm 3
o The model illustrates how computation and memory o 7 memory : cmory : compute
transfer can overlap, represented as: = / | bound | compute . bound
= Performance = max(compute, memory transfer) 7 : , bound |
/ | |

Operational Intensity (flops/byte)

CINECA

GPU vs. CPU: Understanding Performance Trade-offs

Impact of data transfer on overall application performance

Host Compute GPU Compute

~670 GFLOPs (lvy Bridge EX)

| |

42 GB/sec 288 GB/sec

| |

Host Memory GPU memory
32 GB DDR3 12 GB GDDR5

~ 4 TFLOPS (NVIDIA Tesla K40)

CINECA

Understanding CUDA Memory Hierarchy

Registers
1 Fastest, smallest memory
L1 Cache
2
Fast, small, on-chip
Shared Memory
3
Medium speed, shared among threads
Global Memory
4

Slowest, largest, off-chip

CINECA

GPU memory breakdown

Device code can

- R/W per-thread registers

- R/W per-thread Local Memory

- R/W per-block Shared Memory

- R/W per-grid global Memory

- Read only per-grid Constant Memory

- Read only per-grid Texture Memory

Host code can

- Transfer data to/from per-grid global and constant memories

CINECA

CUDA Variable Declaration Summary

QUALIFIER

shared
device

constant

VARIABLE NAME

float wvar

float
var [100]

float var T
float var T

float var T

MEMORY
Register

L ocal

Shared
Global

Constant

SCOPE
Thread
Thread

Block
Global
Global

LIFESPAN
Thread
Thread

Block
Application
Application

CINECA

CUDA memory management

Process of reserving memory space for a variable or data structure Memory
1. Memory allocation allocation can be performed using different memory types, such as global, shared and constant

memory

Process of copying data from one memory location to another
2. Memory transfer Memory copy can be performed using different memory types, such as host

memory and device memory

Process of coordinating the access of multiple threads to shared
3. Memory synchronization memory or global memory

Synchronization primitives: atomic operations, barriers, and locks

CINECA

Data transfer between host and device

Pageable Data Transter Pageable data transfer is default method

Device

Allocated host memory is pageable

« GPU cannot safely access data in pageable

host memory

« When transferring data between the host and

device, the CUDA driver first copies data from

pageable host memory to a page locked or

Host _ o
pinned memory buffer before sending it to the

Pageable

- device
Memory

« Pageable memory in CUDA is used for memory
allocation when data transfers between the
CPU and GPU are infrequent

CINECA

Data memory allocation/release

« cudaMemcpy (void* dst, void *src, size_t nbytes, cudaMemcpyKind kind)

» Direction specifies locations (host or device) of src and dst
» Blocks CPU thread (returns after the copy is complete)
> Does not start copy until previous CUDA calls complete

Kind: specifies the direction of the memory copy

» cudaMemcpyHostToHost
> cudaMemcpyHostToDevice
» cudaMemcpyDeviceToHost

« CudaFree(devPtr)

> Free memory from device Global memory
> Pointer to free object

CINECA

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html#group__CUDART__TYPES_1g18fa99055ee694244a270e4d5101e95b
http://horacio9573.no-ip.org/cuda/group__CUDART__TYPES_g18fa99055ee694244a270e4d5101e95b.html#gg18fa99055ee694244a270e4d5101e95bdeec295de8a74ac2a74f98ffb6c5d7c7
http://horacio9573.no-ip.org/cuda/group__CUDART__TYPES_g18fa99055ee694244a270e4d5101e95b.html#gg18fa99055ee694244a270e4d5101e95b1a03d03a676ea8ec51b9b1e193617568
http://horacio9573.no-ip.org/cuda/group__CUDART__TYPES_g18fa99055ee694244a270e4d5101e95b.html#gg18fa99055ee694244a270e4d5101e95b5653197602d3455a530db5a7edb1a253

Data memory allocation/release

Refers to the coordination of threads accessing global memory or shared memory

e Device synchronization

> |n CUDA, the CPU and the GPU operate asynchronously
» Synchronization is necessary to ensure that the GPU has finished executing before continuing with the CPU code

cudaMemcpy(d_data, h_data, size * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpyAsync(h_result, d_result, size * sizeof(float), cudaMemcpyDeviceToHost);

cudaDeviceSynchronize();

e Thread synchronization

» Threads within a block can access shared memory, which is a memory space shared among all threads in a block
> Ensure that threads accessing shared memory do not interfere with each other

__syncthreads();
// compute using shared memory

CINECA

Data transfer between host and device

Pageable Data Transter Pinned Data Transter Pinned data transfer is pinned or locked

Device Device « Memory cannot be moved by the operating

system

 Pinned memory is memory that is locked in
physical memory and is accessible to both
the CPU and the GPU

« Allocation and deallocation is expensive than

Host pageable memory

Pageable
Memory

— « Provides higher transfer throughput for large

data transfers

CINECA

Pageable and pinned memory transfer

Pageable Data Transfer Pinned Data Transfer
/[allocate and initialize // allocate and initialize

int *h_a, *d_a; // host and device specific arrays cudaMallocHost(nbytes);
h_a = (float*)malloc(nbytes): cudaMalloc(&d_a, nbytes);

cudaMalloc(&d_a, nbytes); 1/ H->D
memcpy H-

/| memcpy H->D cudaMemcpy(d_a, h_a, nbytes, cudaMemcpyHostToDevice);

cudaMemcpy(d_a, h_a, nbytes, cudaMemcpyHostToDevice);
/] kernel compute

/| kernel compute kernelGPU<<<>>>(...,d _a, ...);
kernelGPU<<<>>>(..., d_a, ...);

//cudaMemcpy D->H

[/[cudaMemcpy D->H cudaMemcpy(h_a, d_a, nbytes, cudaMemcpyDeviceToHost);

cudaMemcpy(h_a, d_a, nbytes, cudaMemcpyDeviceToHost); verifyOnHost(host_a, N):
verifyOnHost(host_a, N);

//Free host and device memory /|Free host and device memory
cudaFree(device_a); Free(host_a) cudaFree(device_a); cudaFreeHost(host_a)

CINECA

Vector sum pageable memory transfer

Pageable Data Transfer

* Host memory allocation *
/ Y / [* Define block and grid sizes */

float *h_A, *h_B, *hos’FRef, *gpuRef; int blockSize = 256:

h_A = (float®)malloc(size); int gridSize = (nElem + blockSize - 1) / blockSize;
h_B = (float*)malloc(size);

hostRef = (float*)malloc(size); // Result from CPU
gpuRef = (float *)malloc(size); // Result from GPU

[* Measure time for GPU execution */
start = cpuSecond();
sumArraysOnGPU<<<gridSize, blockSize>>>(d_A, d_B, d_C, nElem);
checkCuda(cudaDeviceSynchronize()); // Ensure GPU kernel finishes
double gpuTime = cpuSecond() - start;
printf("GPU Execution Time: %f seconds\n", gpuTime);

/* malloc device global memory */

*float *d_A, *d_B, *d_C;
checkCuda(cudaMalloc(&d_A, size));
checkCuda(cudaMalloc(&d_B, size));

checkCuda(cudaMalloc(&d_C, size)); /* Copy result from device to host */
[* Copy data from host to device*/ checkCuda(cudaMemcpy(gpuRef, d_C, size, cudaMemcpyDeviceToHost));

lcudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

CINECA

Vector sum pinned memory transfer

Pinned Data Transfer

/* malloc device global memory */

float *h_A, *h_B, *hostRef, *gpuRef;
cudaMallocHost((void**)&h_A, size); // Use cudaMallocHost for pinned memory

cudaMallocHost((void**)&h_B, size); // Use cudaMallocHost for pinned memory [* Define block and grid sizes */

cudaMallocHost((void**)&hostRef, size); // Result from CPU int blockSize = 256;

cudaMallocHost((void**)&gpuRef, size); // Result from GPU int gridSize = (nElem + blockSize - 1) / blockSize;
[* Copy data from host to device */ [* Measure time for GPU execution */

checkCuda(cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice)); start = cpuSecond();

checkCuda(cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice)); sumArraysOnGPU<<<gridSize, blockSize>>>(d_A, d_B, d_C, nElem):

checkCuda(cudaDeviceSynchronize()); // Ensure GPU kernel finishes

[* malloc device global memory */ double gpuTime = cpuSecond() - start;

float *d_A, *d_B, *d_C: printf("GPU Execution Time: %f seconds\n", gpuTime);

checkCuda(cudaMalloc(&d_A, size));

checkCuda(cudaMalloc(&d_B, size)); [* Copy result from device to host */

checkCuda(cudaMalloc(&d_C, size)): checkCuda(cudaMemcpy(gpuRef, d_C, size, cudaMemcpyDeviceToHost));

[* Copy data from host to device */
checkCuda(cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice));
checkCuda(cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice));

CINECA

Vector sum pageable and pinned memory transfer

N Pageable mem transfer Pinned mem transfer SlowDown
1 << 20 0.000500 0.00036 0.72
"""""""""""""""""" V<2 ocowss ooezs 0.462962962962063
""""""""""""""""""" L2 eweme cees Lossissssa
"""""""""""""""""" V<2 ecemes oomem o.oswasise
"""""""""""""""""" V< oeeess oeomss vosoosseres
""""""""""""""""""" L<: oomws oowsss oceaasaomes

CINECA

/ero-copy memory

Host cannot access device variables and device cannot access host variables directly, one exception rule to this : zero copy memory

] GPU threads can directly access zero-copy memory

Leveraging host memory when there is insufficient device memory

Avoiding explicit data transfer between the host and device

Improving PCle transfer rates

When using zero-copy memory to share data between the host and device, you must synchronise memory access across the host and device

p, CUDA API call

« cudaHostAlloc(void **ptr, size_t size, unsigned int flags);
« flags = cudaHostAllocMapped, cudaHostAllocDefault, cudaHostAllocPortable

« Most relevant flag to zero-copy memory is cudaHostAllocMapped, which returns host memory that is mapped into the device address space

CINECA

Vector sum Zero copy transfer

Zero Data Transfer

[* Allocate and initialize host memory for zero-copy*/

cudaHostAlloc((void**)&h_A, size, cudaHostAllocMapped);
cudaHostAlloc((void**)&h_B, size, cudaHostAllocMapped);

cudaHostAlloc((void**)&h_C, size, cudaHostAllocMapped); /* Define block and grid sizes */
int blockSize = 256;
[* Get device pointers for zero-copy memory*/ int gridSize = (nElem + blockSize - 1) / blockSize;
cudaHostGetDevicePointer(&d_A, h_A, 0);
cudaHostGetDevicePointer(&d_B, h_B, 0); /* Measure time for GPU execution */
cudaHostGetDevicePointer(&d_C, h_C, 0); start = cpuSecond():
sumArraysOnGPU<<<gridSize, blockSize>>>(d_A, d_B, d_C, nElem);
[* malloc device global memory */ checkCuda(cudaDeviceSynchronize()); // Ensure GPU kernel finishes
float *d_A, *d_B, *d_C; double gpuTime = cpuSecond() - start;
checkCuda(cudaMalloc(&d_A, size)); printf("GPU Execution Time: %f seconds\n", gpuTime);
checkCuda(cudaMalloc(&d_B, size));
checkCuda(cudaMalloc(&d_C, size)); [* Copy result from device to host */

checkCuda(cudaMemcpy(gpuRef, d_C, size, cudaMemcpyDeviceToHost));
[* Copy data from host to device */
checkCuda(cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice));
checkCuda(cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice));

CINECA

Comparison of Zero-copy Memory vs Device Memory

SIZE ELAPEED TIME () ELAPSEDTIVE (5] SlowDown
.. S A 9.900033 9.900014 ..1....9:424242424242424

4 KB 0.007286 0.002334 0.320340378808674
- 1wk 0.007289 0.002335 0.320345726437097
"""""""""""""""""""""" 64 k6 0.001673 0.002342 1.39988045427376
S 2seke 0.002434 0.002358 ~ 0.068775677896467
S ame 0.002446 0.002524 1.03188879803761
""""""""""""""""""""""" a8 e.000849 0.000454 0.534746760895171
T 0.00422 0.004123 0.960624417520969
"""""""""""""""""""""" 64Ms 0.01213 0.007024 0.578773895847067
- 2sem 0.05155 0.020347 0.569192575496034

CINECA

Unified virtual memory (UVM)

Increased memory latency

- Single allocation, single pointer, accessible everywhere
eliminate the need of explicit copy and simplify code porting

- Enables the sharing of memory which reduces overall usage

Limited control over memory placement

UVM automatically manages memory placement, which
may not always be optimal for a given application

Developer view of GPU memory

Unified memory

CINECA

How does cudaMallocManaged actually works?

When UM is allocated, it may not be
resident initially on the CPU or the
GPU

cudaMallocManaged ()

Time

CINECA

How does cudaMallocManaged actually works?

When some work asks forthe memory

for the first time, a page fault will
occur

Time

CINECA

How does cudaMallocManaged actually works?

The page fault will trigger the migration
of the demanded memory

Time

CINECA

How does cudaMallocManaged actually works?

This process repeats anytime the
memory is requested somewhere In
the system where it is not resident

Time

CINECA

How does cudaMallocManaged actually works?

This process repeats anytime the
memory is requested somewhere In
the system where it is not resident

Time

CINECA

Simplified memory management code

Allow to allocate and free memory

CPU code

int N = 10000;
size_t size = N *sizeof(int);

int *a;

a = (int*)malloc(size); >

@ee(a})

CUDA Code with UM

int N

size_t size = N *sizeof(int);

= 10000;

int *a;

<_cudaMallocManaged(&a, size); >

@da]

?ree(a);)

CINECA

Vector sum Unified memory transfer

Unified memory Transfer

[* Unified Memory allocation */ [* Define block and grid sizes */
float *a, *b, *hostRef, *gpuRef; int blockSize = 256;
checkCuda(cudaMallocManaged(&a, size)); int gridSize = (nElem + blockSize - 1) / blockSize;
checkCuda(cudaMallocManaged(&b, size));
checkCuda(cudaMallocManaged(&hostRef, size)): [* Measure time for GPU execution */
checkCuda(cudaMallocManaged(&gpuRef, size)); start = cpuSecond();

sumArraysOnGPU<<<gridSize, blockSize>>>(d_A, d_B, d_C, nElem);
checkCuda(cudaDeviceSynchronize());

double gpuTime = cpuSecond() - start;

printf("GPU Execution Time: %f seconds\n", gpuTime);

[* Copy result from device to host */

checkCuda(cudaMemcpy(gpuRef, d_C, size,
cudaMemcpyDeviceToHost));

CINECA

.
1

Best Practices for porting a code

Understand the application

1 Mini app, Understand if the kernel is memory or compute bound

Identify Hot Spots

) Analyze your application's memory access patterns and identify the critical data that
should be prefetched

Time Prefetching

3 Carefully time the prefetch operations to overlap with kernel execution and minimize

latency — = LT Tt

Monitor Performance

4 Use profiling tools to measure the impact and fine-tune its usage: profiler the code with
Nsight-system + NVTX, Nsight compute

CINECA

It's all about memory access patterns

HBM Memory Throughput as Addresses Diverge
(8-byte reads, A100)

1418 GB/sec

[HEN
)
N
i

Depending on how you access memory bandwidth
can very greatly!

111 GB/sec

O,

%)
Q
(7))

~

(a]

O

—

i -
s

.'9
3

©
c
(1]

(aa]

©
v
>

2

i -
(O)

<

16 32 64 128 256 512 1024 2048 4096 8192
Stride Interval (in Bytes) Between Successive Reads

CINECA

Memory access patterns

« For blocks that consist of multiple dimensions of threads,
the dimensions will be projected into a linear order before
partitioning into warps

Aligned direction

in kernel code

« Each thread is shown as M(x,y), with x being the threadldx.x
and y being threadldx.y for the thread

« Cooperatively, the 32 threads in a warp present a single
memory access request comprised of the requested
addresses, which is serviced by one or more device memory
transactions.

r_/__\

Moo Mio M20 Mz Mo Mnn M2 Ms3 Mzo Mz Mz Maz3

| Loading iteration O || Loading iteration 1 i

CINECA

Memory access patterns

Aligned direction Aligned direction

iNn kernel code iNn kernel code

\4

Moo Mio M20 Mzo Mo Mnn M2 Mz [M2gfM21 [M22 IM23 Mz0 Mz Mz Mazs

Moo Mio M2o0 Mzo Mo Mnn M2 Mz [M2gfM21 [M22 [M23 Mz0 Mz Mz Maz3

Loading iteration O

v v v v

Loading iteration 1

Loading iteration O Loading iteration 1

CINECA

Memory bandwidth limits GPU-enabled applications

- Memory operations are issued per warp, with each

thread providing its own memory address SMO SM1
Registers Registers
- Global memory loads/stores are staged through
L2 and sometimes L1 caches
- Global memory accesses go through L2 cache, SMEM L1 Read Constant SMEM L1 Read Constant
Onl Onl
with optional L1 cache usage based on architecture 4 g

- Memory transactions use 128-byte or 32-byte
segments, depending on cache involvement

- L1 cache lines are 128 bytes and map to 128-byte
aligned segments in device memory

- Perfect mapping occurs when each thread in a

warp requests one 4-byte value, matching the 128-
byte cache line size

CINECA

Efficient memory access Is crucial

Aligned Memory Access

accessed by threads are arranged such that each thread
accesses data in consecutive memory locations

L1 and L2 cache granularity: 32 bytes 128 byte

memory address 128

160

192

224

A2222222222222222222222222222212)

256

thread ID O

31

Misaligned Memory Access

accessed by threads are not consecutive or not aligned to

memory transaction boundaries

memory address 128 160 192 224 256

I 2 2222222222222222222222 92 2 s
|

thread ID O 31

CINECA

Efficient memory access Is crucial

__global__ void sumAddalignedacces(float *a, float *b, float *c, int n, int offset) {

for (int idx = offset, k = 0; idx < n; idx++, k++)

C[k] = A[Lidx] + B[idx];

__global__ void missedAlignedAccessed(float *a, float *b, float *c, int n) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
int k = 1 + offset;

if (int i < k) { c[i] = ali] + b[I]; }

CINECA

Time your kernels

Offset SIMULATION TIME (SECONDS)
O 0.003968
12 0.00401 1
33 0.004024

CINECA

Array of Structure versus Structure of Arrays

Array of Structures (AOS)
Structure of Arrays (SOA)

struct innerStruct {
struct innerStruct {

float x[N];
float y[NI;
5

float x;
float y;

s

struct innerStruct myAoS[N];
struct innerArray moa;

SoA memory layout
AoS memory layout
x|y |y]

P11
T T T T thread ID t0 t1 t2 t3
thread ID t0 t1 t2 t3

JRALIRARIRARIRE

CINECA

Sample code: EPIC In a predefined electric field

Basic assumptions

Only compute the force from electric field

Neglect magnetic field

Main function

Particle position
Particle velocity
Electric field

—>

F=gE+qvxB

Electric Magnetic
Jorce Jforce
Vector Scalar
N N
F=m
7 Ve

Force (N) mass (kg)

final initial

position sp?ed accc;leration
2
X = x0+ vxoi +laxi
\ 2 *
initial time
position interval

CINECA

AOS: EPIC In a predefined electric field

// Move particles by updating their position
void move(struct ParticlelList* pl, double dt, int DIM) {

- - for (int i = 0; 1 < pl->n; ++i) {
Struct for ParticleList A e s O S i e
pl->parts[i].pos[]j] += dt * pl->parts[i].vel[j];
// Apply periodic boundary conditions

struct ParticlelList { if (pl->parts[i].pos[j] > 1.0) {
pl->parts[i].pos[]j] -= 1.0;

// An array of particles Structures }
if (pl->parts[i].pos[j] < 0.0) {
struct Particle* parts; pl->parts[i].pos[]j] += 1.0;
}
// This represents the number of particles in the array) }
int n; ’
// Main simulation loop
}; int step = 0;
for (double t = 0; t < 1; t += dt, ++step) {
pl->parts = (struct Particle*)malloc(n * sizeof(struct Particle)); nvtxRangePush("Time Step");

nvtxRangePush("setE");

setE(&p, DIM); // Update electric field for all particles
// Set the electric field for each particle nvtxRangePop(); //SetE
void setE(struct ParticleList* pl, int DIM) { '

for (int i = @; 1 < pl->n; ++i) { nvtxRangePush("accel");

for (int j = @; j < DIM; ++j) { accel(&p, dt, DIM); // Update velocities of all particles
pl->parts[i].E[j] = sin(M_PI * pl->parts[i].pos[j]); nvtxRangePop(); // Accel
} nvtxRangePush("move");
}) move(&p, dt, DIM); // Update positions of all particles
nvtxRangePop();
// Accelerate particles by updating their velocity nvtxRangePop(); // Time Step

void accel(struct ParticlelList* pl, double dt, int DIM) {
for (int i = 0; i < pl->n; ++i) {

for (int j = @; j < DIM; ++j) { // Save data every ndumps steps
pl->parts[i].vel[]j] += dt * pl->parts[i].q / pl->parts[i].m * pl->parts[i].E[]]; if (step % ndumps == 0) {
} printData(&p, t, outFile, DIM); // Save particle data
} } ;
¥

CINECA

SOA: EPIC In a predefined electric field

Struct for ParticleList Data access pattern in functions like ‘setE’, ‘accel’, and ‘'move™:
struct ParticleList { for éi”t(j ; 9; j@f DIM; I+j).{ W
double *pos[MAX DIM]; // Array of pointers for position or tint 1 =9, i < pL-=>n; 441 e L
double *vel[MAX_DIM]; // Array of pointers for velocity } pL->E[J1[3] = sin(M_PI = pl->pos[JI[31);
double *E[MAX DIM]; // Array of pointers for electric field }
double *q; // Array for charges
double *m; // Array for masses // Accelerate particles by updating their velocity
int n; // Number of particles void accel(struct ParticleList* pl, double dt, int DIM) {
. for (int j = 0; j < DIM; ++j) {
}s for (int i = @; i < pl->n; ++i) {
pl->vel[]j][i] += dt * pl->q[i] / pl->m[i] * pl->E[J][1];
}
for (int i = @; i < DIM; ++i) { }
pl->pos[i] = (double*)malloc(n * sizeof(double)); ¥
- 1 — % * 1 .
pL >ve}[1] (doubie)malloc(: .51zeof(double?), // Move particles by updating their position
pl->E[i] = (double*)malloc(n * sizeof(double)); void move(struct ParticleList* pl, double dt, int DIM) {
} for (int j = @0; j < DIM; ++j) {
pl->g = (double*)malloc(n * sizeof(double)); for (int 1 = 0; i < pl->n; ++i) {
pl->m = (double*)malloc(n * sizeof(double)); pl->pos[j][i] += dt * pl->vel[j][i];

// Apply periodic boundary conditions

if (pl->pos[j][i] > 1.0) {
pl->pos[j][i] -= 1.60;

}

if (pl->pos[j][i] < 0.0) {
pl->pos[j][i] += 1.0;
}

CINECA

Time your kernels

Input parameters RUNS SIMULATION TIME (SECONDS)
number of Particles = 40000000
| _ AOS 38.33
dimensions =2
dt = 0.1
ndumps = 1000 SOA 35.93
» CPU (32) .10 100%

~ Threads (4)
-..to 100 |

+ v [116674] picaos.x ~

Time Step [477.385 ms)

l' Y

NVTX ; ——— —_—e— D e — —— — — —— - +
SOtE [323.025 ms] [accallizsiemsl [N move [81.815ms) j

Q)‘ \ / \ ‘

Profiler overhead

3 threads hidden... — 4 .10 100%

CINECA

Time your kernels

Runs N Kernel Configuration Elapsed Time on Device
Pageable memory 40000000 (156250, 256) 19.93
Pinned memory 40000000 (156250, 256) 19.21
CudaMallocManaged 40000000 (156250, 256) 19.59

CINECA

Nsight Compute

Report Resuit Size Time Cycles GPU SM Frequency Process
report_20241..4_110809_ncu 897 - setEKemel v v (156250,1,1)x(256,1,1) 145ms 1802928 O0-NVIDIAAT00-SXM-64GB 1.25Ghz [2799376) picaos.x

report_20241..3_.111730_ncu 901 - setEKemel (781251, 1)x(256,1,1) 729.57us 906411 0 - NVIDIA A100-SXM-64GB 1.24 Ghz [118627] picaos.x

m Compare _ a Tools _ @Vlew = GoExport =)

w GPU Speed Of Light Throughput GPU Throughput Chart *- O

High-evel overview of the throughput for compute and memory resources of the GPU. For each unit, the throughput reports the achieved percentage of utilization with respect to the theoretical maximum. Breakdowns show the throughput for each individual sub-metric of Compute and Memory to clearly

identify the highest contributor. High-Jevel overview of the utilization for compute and memory resources of the GPU presented as a roofline chart Pe a g e a b | e M e m O ry
Compute (SM) Throughput [%] 78.58 (+0.57%) Duration [ms) 1.45 (+98.41%)
Memory Throughput [%) 26.89 (+287%) Eapsed Cycles [cycle] 1802928 (+98.91%)
L1/TEX Cache Throughput [%) 11.92 (+0.48%) SM Active Cycles [cycle] 1799449.76 (+99.06%)
L2 Cache Throughput [%) 4205 (+0.51%) SM Frequency [Ghz] 125 (+0.23%)
DRAM Throughput [%] 26.89 (+#287%) DRAM Frequency [Ghz] 1.59 (+0.26%)

Compute is more heavily utilized than Memory: Look at the section to see what the compute pipelines are spending their time doing. Also, consider whether any computation is redundant and could be reduced or moved to 11
lz High Compute Throughput ooreours = 0" heavily = —L — - come @ Unified Men 10y

The ratio of peak float (fp32) to double (fp64) performance on this device is 2:1. The kernel achieved 5% of this device’s fp32 peak performance and close to 1% of its fp64 peak performance. See the for more details on roofline analysis.

GPU Throughput

Compute (SM) [%)

Memory (%)

Speed Of Light (SOL) [%)

Warning: The target system provides NVLink support, but you did not collected any

To customize your report even further, you might want to leam about and
You might also want to consider

CINECA

Optimising memory transfers: cudaMemPrefetchAsync

1

What is cudaMemPrefetchAsync?

1 cudaMemPrefetchAsync

CUDA function that allows you to explicitly move data to a specific memory location before it is actually needed

2 Supported Platforms

works on both CPU and GPU memory and is supported on NVIDIA GPUs

CINECA

How to use cudaMemPrefetchAsync?

1 Before Kernel Launch

Call cudaMemPrefetchAsync to prefetch data into the cache before
the kernel that will use it runs

2 Syntax

cudaMemPrefetchAsync(particles.pos, N * DIM * sizeof(float), device_id);

CINECA

When use cudaMemPrefetchAsync?

1 Memory Bound Kernels

most beneficial for kernels that are limited by memory access latency or bandwidth

2 Irregular Access Patterns

particularly useful for workloads with unpredictable or scattered memory access patterns

3 Asynchronous Execution

designed to be used in asynchronous programming models, where data transfers and computations can overlap

4 Multi-GPU Environments

help optimize data movement between multiple GPUs or between the CPU and GPU

CINECA

Time your kernels

Runs

Pageable memory

Pinned memory

CudaMallocManaged

Prefetching

40000000

40000000

40000000

40000000

Kernel Configuration

(156250, 256)

(156250, 256)

(156250, 256)

(524288, 128)

Elapsed Time on Device

19.93

19.21

19.59

19.33

CINECA

Nsight Compute

Report Resuit Size Time Cycles GPU SM Frequency Process
Current report_20241..4_111312_ncu 903 - setEKemel (156250,1, 1)x(256,1,1) 145ms 1802718 O0-NVIDIAAT00-SXM-64GB 1.25 Ghz [2800488] picaos.x

Baseline 1 report_20241..3_.111730_ncu 901 - setEKemel (78125, 1, 1)x(256,1,1) 729.57us 906411 0 - NVIDIA AT100-SXM-64GB 1.24 Ghz [118627) picaos.x

Baseline 2 report_20241..4_110809_ncu 897 - setEKemel (156250,1, 1)x(256,1,1) 145ms 1802928 O0-NVIDIAAT00-SXM-64GB 1.25 Ghz [2799376) picaos.x

Detalls = " ot - : £J compare y R Tools . ®view _ (2 export ,
w GPU Speed Of Light Throughput GPU Throughput Chart - Q. Peageable Memory

High-evel overview of the throughput for compute and memory resources of the GPU. For each unit, the throughput reports the achieved percentage of utilization with respect to the theoretical maximum. Breakdowns show the throughput for each individual sub-metric of Compute and Memory to clearly
identify the highest contributor. HighJevel overview of the utilization for compute and memory resources of the GPU presented as a roofline chart

Compute (SM) Throughput [%] 78.60 (+0.30%, z=+0.74) Duration |ms) 1.45 (#32.93%, z=+0.71)
Memory Throughput [%) 26.90 (+1.44% z=+0.72) Elapsed Cycles [cycle) 1802718 (+#33.07%, z=+0.71)
L1/TEX Cache Throughput [%) 11.92 (+0.27%, z=+0.77) SM Active Cycles [cycle] 1798855.16 (+33.08%, z=+0.71)
L2 Cache Throughput [%) 42.06 (+0.29%, z=+0.79) SM Frequency [Ghz] 1.25 (+0.14%, z=+0.79)

DRAM Throughput [%] 26.90 (+1.44%, z=+0.72) DRAM Frequency [Ghz] 1.59 (+0.16%, z=+0.82) U n Ifl e d M e m O ry

lﬁ High Compute Throughput Compute is more heavily utilized than Memory: Look at the section to see what the compute pipelines are spending their time doing. Also, consider whether any computation is redundant and could be reduced or moved to @

look-up tables.

@ Roofline Analysis The ratio of peak float (fp32) to double (fp64) performance on this device is 2:1. The kernel achieved 5% of this device's fp32 peak performance and close to 1% of its fp64 peak performance. See the for more details on roofline analysis.

Prefetch Memory

GPU Throughput

Compute (SM) [%]

Memory [%)

0.0 50.0
Speed Of Light (SOL) %)

Warning: The target system provides NVLink support, but you did not collected any

To customize your report even further, you might want to leam about and
You might also want to consider

CINECA

Nsight system report

23s ~ +949ms . +969ms . +989ms . 24}3 . +2an3 . MQms . +6Qms . +8Qms . +109ms . +129ms . +149ms 24s 157.8

» CPU (32) .10 100%

~ CUDA HW (0000:1d:00.0- NVIDI . kernel
- 55.0% Context 1

i TN T U T T T N T O T O T T T T
~ 100.0% Kernels . S L ———————— e yeleleetefeepe ot
e ————————— & & & & & = &
el

» 86.5% setEKernel
» 8.0% accelKernel
» 5.6% moveKernel

(Time Step [170.058 ms)
NVTX (SOtE [167.165 ms)

~ 45.0% Unified memory

81.7% HtoD transfer

L0 0 100 0 0 .00, 0 0 0 0 00 0000 00 0L, 00 0 e 00 0 O e

Look at this pattern

CINECA

How can we overlap kernel and data transfer?

1

What isa STREAM?

Sequence of CUDA operations

kernel execution, memory transfer that execute in issue-order on the GPU

By default, CUDA kernels are executed in a default stream

Instructions are excited in order (in any stream): an instruction must be completed before the next one can begin

DEFAULT STREAM O

Time

CINECA

Non-default Stream behaviour

Rules of governing the behaviour of streams

2

Multiple streams or Non-default streams can be created and utilise by CUDA programmers

Kernels, with any single STREAM must execute in order

However, kernels in different, non-default streams, can interact concurrently, have no fixed order of execution
NON- DEFAULT STREAM 2
NON- DEFAULT STREAM 1
DEFAULT STREAM O

Time

CINECA

7

Understanding CUDA Non-Streams behaviour

1

CINECA

Where 1t can be useful?

Kernel Enqueuing

Kernels are enqueued into a specific stream for

execution on the GPU.

Asynchronous Execution with Streams

Serial

Concurrent

Memory Transfer

Data transfers between host and device can be enqueued

asynchronously into streams.

Overlapped Execution

concurrently in different streams.

Memory Copy (H2D) ‘ Kernel .] Memory Copy (D2H)
E E) time
H2D | K1 D2H E 5
: Performance improvement :
H2D K2 D2H e >
H2D | k3 | D2H | 5
: i) time

The GPU can execute kernels and memory transfers

CINECA

When use cudaMemPrefetchAsync?

1 How to use streams in a CUDA program?
cudaStream_t stream; cudaStreamCreate(&stream); // Note that a pointer must be passed to “cudaCreateStream .
2 How to use streams in a CUDA program?

someKernel<<<number_of_blocks, threads_per_block, O,stream>>>();

3 How to Destroying Non-Default CUDA Streams?

cudaStreamDestroy (stream);

4 Blocking and Non-blocking streams

cudaStreamcreate is blocking streams, there is also exists non-blocking streams - But we do not cover it here

CINECA

CUDA Stream Synchronization

« Explicit
> cudaDeviceSynchronize()
> Blocks until all CUDA operations are finished

> cudaStreamSynchronize(stream))
>~ Blocks until all CUDA operations are finished within given stream

» cudaEvenRecord(event, stream1), cudaStreamWaitEvent(stream2, event)
>~ Blocks until all CUDA operations are finished within given stream

« Implicit
» Page-locked memory allocation
» cudaMallocHost, cudaHostAlloc

> Device memory allocation
> cudaMalloc

>~ Blocking version of memory operations
> cudaMemcpy, cudaMemset

> Implicit synchronize all CUDA operations

CINECA

Nsight system report

35 ~ i6§ms ; +56q.5ms) +56?ms) +5671.5ms) +56§ms) +56q.5ms) +56?ms) +5691.5ms) +579ms : +5701.5ms) +57]ms) +5711.5ms) +57?ms
» CPU (32) .10 100%
~ CUDA HW (0000:1d:00.0 - NVID| __kernel

memory
» [All Streams]

» 64.3% Stream 17
» 22.9% Default stream 7
» 12.9% Stream 16

~ Threads (8)

~ v [122639] picaos.x ~

.10 100%

NVTX
CUDA API

Look at this pattern

CINECA

Time your kernels

Runs

Pageable memory

Pinned memory

CudaMallocManaged

Prefetching

Streams

40000000

40000000

40000000

40000000

40000000

Kernel Configuration

(156250, 256)

(156250, 256)

(156250, 256)

(524288, 128)

(524288, 128)

Elapsed Time on Device

19.93

19.21

19.59

19.33

20.06

CINECA

Nsight Compute

Report Resuit
report_20241..4_111312_ncu 903 - setEKemel

report_20241..4_110809_ncu 897 - setEKemel

report_20241..3_114546_ncu 903 - setEKemel

- GPU Speed Of Light Throughput

Size Time Cycles GPU

(156250,1, 1)x(256,1,1) 1.45ms 1802718
(156250, 1, 1)x(256,1,1) 1.45ms 1802928

(39063,1,1)x(1024,1,1) 213 ms 2653289

Comments

0 - NVIDIA A100-SXM-64GB

0 - NVIDIA A100-SXM-64GB

0 - NVIDIA A100-SXM-64GB

SM Frequency
1.25 Ghz

1.25 Ghz

1.25 Ghz

Process

[2800488] picaos.x
[2799376] picaos.x

[122720] picaos.x

Attributes

@

m Compare _ a Tools _ @V’lew = BOExport =l

GPU Throughput Chart

@

High-evel overview of the throughput for compute and memory resources of the GPU. For each unit, the throughput reports the achieved percentage of utilization with respect to the theoretical maximum. Breakdowns show the throughput for each individual sub-metric of Compute and Memory to clearly
identify the highest contributor. High-Jevel overview of the utilization for compute and memory resources of the GPU presented as a roofline chart

Compute (SM) Throughput [%]

Memory Throughput %)

L1/TEX Cache Throughput [%]

L2 Cache Throughput [%)
DRAM Throughput [%]

Compute is more heavily utilized than Memory: Look at the

u High Compute Throughput look-up tables.

Compute (SM) [%)

Memory [%)]

78.60 (+19.12%, z=+0.71)
26.90 (+19.45%, z=+0.71)
11.92 (+18.36%, z=+0.71)
42.06 (+20.58%, z=+0.71)
2690 (+19.45%, z=+0.71)

Duration |ms)

Elapsed Cycles [cycle]
SM Active Cycles [cycle)
SM Frequency [Ghz]
DRAM Frequency [Ghz)

The ratio of peak float (fp32) to double (fp64) performance on this device is 2:1. The kernel achieved 5% of this device’s fp32 peak performance and close to 1% of its fp64 peak performance. See the

GPU Throughput

Speed Of Light (SOL) [%)

Warning: The target system provides NVLink support, but you did not collected any

To customize your report even further, you might want to leam about
You might also want to consider

and

1.45 (-19.13%, z=-0.71)
1802718 (-19.09%, z=-0.71)
1798855.16 (-17.89%, z=-0.71)
1.25 (+0.02%, z=+1.40)

1.59 (+0.05%, z=+1.15)

section to see what the compute pipelines are spending their time doing. Also, consider whether any computation is redundant and could be reduced or moved to

for more details on roofline analysis.

®

Peageable Memory

Unified Memory

Stream

CINECA

Multiple streaming-GPU

PCle PCle

- o -

CINECA

When use cudaMemPrefetchAsync?

1 Get number of GPUs

int numGPUs; cudaGetDeviceCount(&numGPUs);

2 Determine the number of particles per GPU

int particlesPerGPU = N / numGPUs;

// Non-coalesced access example

3 For each GPU, allocate memory, create streams, and launch kernels
for (int gpu = 0; gpu < numGPUs; ++gpu) {
cudaStream_t streams1[numGPUs], streams2[numGPUs]; cudaSetDevice(gpu); // Set the GPU
int numBlocks = (particles[gpu].n + BLOCK SIZE - 1) /
BLOCK_SIZE;
4 Final data transfer and synchronization setEKernelccnumBlocks, BLOCK SIZE, 0,
streamsl[gpu]>>>(particles[gpu].d pos, particles[gpu].d E,
cudaStreamSynchronize srreteileslapu] m, G

cudaStreamSynchronize(streams2[gpu]); // Ensure all data is

transferred

CINECA

Time your kernels

Runs
Peag-able memory
Pinned memory
CudaMallocManaged
Prefetching
Multiple Streams

Multiple Streams-GPU

N

40000000

40000000

40000000

40000000

40000000

40000000

Kernel Configuration
(156250, 256)
(156250, 256)
(156250, 256)
(524288, 128)
(524288, 256)

(39063, 256)

Elapsed Time on Device
19.93
19.21
19.59
19.33
20.06

20.23

CINECA

Nsight system report

+Sans

+5‘[ms

+5%ms

+5:ilms +54!ms +5§ms

+5§ms

~ CUDA HW (0000:c8:00.0 - NVIDI
» [All Streams]
» 67.3% Stream 53
» 22.9% Default stream 43
» 9.8% Stream 52

Py +44ms +45ms +46ms 4s 47.11ms EREEIE
» CPU (32) .10 100%
~ CUDA HW (0000:1d:00.0 - NVIDI , kernel
» [All Streams]
» 67.7% Stream 17
» 22.6% Default stream 7
» 9.7% Stream 16
~ CUDA HW (0000:56:00.0 - NVIDI , kernel
» [All Streams]
» 67.3% Stream 29
» 22.9% Default stream 19
» 9.8% Stream 28
~ CUDA HW (0000:8£00.0 - NVIDI. . kernel
» [All Streams]
» 64.4% Stream 41
» 22.0% Default stream 31
» 13.6% Stream 40
kernel

Look at this pattern

CINECA

Nsight system report

Report Resuit Size Time Cycles GPU SM Frequency Process Attributes
Current report_20241..4_141720_ncu 997 - setEKemel v v (390631, 1)x(256,1,1) 369.09us 457553 0-NVIDIAA100-SXM-64GB 1.24 Ghz [2812692] picaos.x @

Baseline 1 report_20241..3_114546_ncu 903 - setEKemel (39063,1, 1)x(1024,1,1) 213 ms 2653289 0-NVIDIAATOD-SXM-64GB 1.25Ghz [122720] picaos.x
Details = " - - S— £J compare u R Tools . ®view _ 2 export y

@ GPU Speed Of Light Throughput GPU Throughput Chart " ®)

High-evel overview of the throughput for compute and memory resources of the GPU. For each unit, the throughput reports the achieved percentage of utilization with respect to the theoretical maximum. Breakdowns show the throughput for each individual sub-metric of Compute and Memory to clearly
identify the highest contributor. HighJevel overview of the utilization for compute and memory resources of the GPU presented as a roofline chart

Compute (M) Thioughpt 7740 (44504% Durston 36609 (8268 Multiple stream single gpu

Memory Throughput [%) 2530 (+#39.44%) Elapsed Cycles [cycle] 457553 (-82.76%)
L1/TEX Cache Throughput [%) 11.81 (#43.60%) SM Active Cycles [cycle) 453809.80 (-82.42%)
L2 Cache Throughput [%) 40.51 (+46.13%) SM Frequency [Ghz] 1.24 (-0.48%)
DRAM Throughput [%] 24.51 (#35.09%) DRAM Frequency [Ghz] 1.59 (-0.40%)

Compute is more heavily utilized than Memory: Look at the section to see what the compute pipelines are spending their time doing. Also, consider whether any computation is redundant and could be reduced or moved to
|~ High Compute Throughput bok_ﬁp s y - P sl g A ©)

Multiple stream-gpu

@ Roofline Analysis The ratio of peak float (fp32) to double (fp64) performance on this device is 2:1. The kernel achieved 5% of this device's fp32 peak performance and close to 1% of its fp64 peak performance. See the for more details on roofline analysis.

GPU Throughput
Compute (SM) [%)

Memory (%)
0.0 50.0
Speed Of Light (SOL) [%]

Warning: The target system provides NVLink support, but you did not collected any

To customize your report even further, you might want to leam about and
You might also want to consider

CINECA

Implementing higher dimensional grid in CUDA

1

CINECA

Multidimensional Blocks and Grids

Host program specifies “grid-block-threads”
configuration for kernel at run time

« All threads spawned by a single kernel launch are
collectively called a grid

« All threads in a grid share the same global memory space

« A grid is made up of many thread blocks

« Kernel needs to know run-time configuration

 Built-in-three-dimensional type for threads (uint3) and
blocks (dim3)

- threadldx.x, threadIdx.y, threadIdx.z
- blockIdx.x, blockIdx.y, blockIdx.z

- blockDim.x, blockDim.y, blockDim.z

Grid Dimension: 3x2 = 6 Blocks

Host

Kernel

Block Dimension: 5x3 = 15
Threads/Blocks

(6 Bloeks) x(15 Threads/
Bloeks) = 90 Total threads
in Grid

Device
Grid
> Block Block Block
(0, 0) (1, 0) (2, 0)
quc;k’/ Block \\\ Block
,‘(O: 1) (11 1) \‘\(21 1)
Block (1, 1)

CINECA

Device Run-time Configuration

Type
dim3
uint3
dim3

uint3

Dimension
1D
2D

3D

(Dx)
(Dx, Dy)

(Dx, Dy, Dz)

Variable

gridDim

blockldx
blockDim

Threadldx

Variable

Description
Dimensions of grid
Index of block within grid
Dimensions of block

Index of thread within block

ID
X
y + y*Dx

z + y*Dx + z*DxDy

CINECA

CUDA compute grid

CUDA compute grid supports 1-3 dimensions

gpu_kernel<<<4,.2>>>(...)
gpu_kernel<<<dim3(8, 4, 1), dim3(4,2,1) >>>(...)

gpu_kernel<<<dim3(16, 8, 4), dim3(8, 4, 2) >>>(...)

Useful for when

Dealing with multidimensional data
CUDA's dim3 type for both 2D and 3D grids and blocks
CUDA variables: gridDim.x, gridDim.y, gridDim.z, gridBlock.z,...

CINECA

Two matrix multiplication

n
Pij — Zk=1Mik ’ Nkj

Pio = Moy ™ Nyjg + Mg * Ny + Myg ™ Ny + + Mz ™ N3

P30

Poo = My, * Nog + Mo * Nyg + Moy ™ Nyg + +My, * Ny

CINECA

Two matrix multiplication

volid matrixMultOnHost (float* M, float* N, float* P, int Width){
for (int row = 0; row < Width; ++row){

for (int col = 0; col < Width; ++col){ N

// accumulate element-wise products j

float pval = 0;

WIDTH

for (int k = 0; k < Width; ++k){
float a = M[row*Width + k];

- -

float b = M[k*Width + col];
pval += a*b; M P

}

P[row*width + col] = pval; -
} k

} WIDTH WIDTH

WIDTH

CINECA

CUDA compute grid supports 1-3 dimensions

2D

int
int

3D

int
int
int

X .

blockIdx.
blockIdx.

hloc
hloc
hloc

<Io
<Io

<K1d

X
X

X X
N <
*

X

*

blockDim.
blockDim.

hloc
hloc
hloc

Dim.
Dim.
Dim.

X

N < X

-+

+
ct

threadIdx.
threadIdx.

nread
nread

ct

nread

ct

Ic
Ic

Ic

X
X

X
N

X
N

e CUDA "hides" loop headers into kernel launch parameters

* Ranges are distributed between threads and blocks of threads

* Blocks number is rounded up to handle the remainder

ix = threadldx.x + blockldx.x * blockDim.x

> nx

Awi@ypo|q x AXppPo|q + Axplpeaiyr = A

>
<

]

matrix coordinate: (ix,iy)
global linear memory index: idx = iy*nx + ix

CINECA

Two matrix multiplication on GPU

// Kernel for matrix multiplication

void matrixMultiplicationKernel(float* M, float* N, float* Pd, int Width)

{
int row = blockIdx.y * blockDim.y + threadIdx.y: Block(0.0) Block(1,0)
1int col = blockIdx.x * blockDim.x + threadIdx.x; \\\ ///
if (row < Width && col < Width) { TILE WIDTH = 2
float sum = 0;
for (int k = 0; k < Width; ++k) {
sum += M[row * Width + k] * N[k * Width + coll;
I3
Pd[row * Width + col]l = sum; ’ ’ ’ ’
1 ‘//’ ‘\\\
1 Block(0,1) Block(1,1)

CINECA

Two matrix multiplication on GPU

N Methods Time execution Speedup
Serial 25.18 |
2048x2048
CUDA 0.063 398.29

CINECA

Unrolling loops

.
1

Unrolling loops

__global__ void unrolledMatrixMultiplicationKernel(float *A, float *B, float *C, int n, int m, int p) {
int i = blockldx.x * blockDim.x + threadldx.x; // Row index of C

int j = blockldx.y * blockDim.y + threadldx.y; // Column index of C

if(i<n&&j<p){

float sum = O; // Changed to float

for (intk=0;k<m-3; k +=4) {
sum+=Ali*m+k]*Blk*p+jl+Ali*m+k+ 1]*Bl(k+1)* p+j]+

Ali*m+k+2]"Bl(k+2)*p+jl+Ali*m+k+3]*Bl(k+3)*p+jl;

}

/[Handle remaining elements

for(intk=(mM/4)*4;k <m; k++) {
sum += Ali *m + k] * B[k * p +j];

}

Cli*p +j] = sum;

CINECA

Two matrix multiplication on GPU

N Methods Time execution Speedup
Serial 25.18 1
2048x2048 CUDA 0.063 398.29
Unrolled loop 0.055491 453.92

CINECA

10 What Bandwidth can a kernel achieve?

1

CINECA

Theoretical Bandwidth vs. Effective Bandwidth

Theoretical Bandwidth Performance Gap

The absolute maximum bandwidth achievable with the hardware. Effective bandwidth is often lower than theoretical bandwidth due to

various factors.

Effective Bandwidth
Optimization Importance

The measured bandwidth that a kernel actually achieves
Bridging the gap between theoretical and effective bandwidth is a

: 9
effective bandwidth (GB/s) = (bytes read +bytes written) x 10

Ty p— key optimization goal.

CINECA

Matrix transpose problem

SR

HED

7

11

data layout of original matrix

0 1 2

3 4“5

void transposeHost(float *out, float *in, const int nx, const int ny) {
for (int iy = O; iy < ny; ++iy) {
for (int ix = O; ix < nx; ++ix) {

outlix*ny+iy] = in[iy*nx+ix];

}
}
}
data layout of transposed matrix
8 } 9 10 11 0 4 8 | 1 ‘ 5 9

ML
ML
2]
HEE
transposed
2| 6 |10] 3| 7| m

CINECA

CUDD Matrix transpose

__sglobal__

void tranposeRow(float *out, float *in, const int nx, const int ny) {
unsigned int ix = blockDim.x * blockldx.x + threadldx.x;
unsigned int 1y = blockDim.y * blockldx.y + threadldx.y;

if (ix < nx && iy < ny) { out[iy*nx + ix] = in[iy*nx + ix];}

__global__

void tranposeCol(float *out, float *in, const int nx, const int ny) {
unsigned int 1x = blockDim.x * blockldx.x + threadldx.x;
unsigned int iy = blockDim.y * blockldx.y + threadldx.y;

if (ix < nx && iy < ny) { outlix*ny + iy] = inlix*ny + iy]; }

ix = threadldx.x + blockldx.x * blockDim.x

threadldx.y + blockldx.y * blockDim.y

ly =

)
<

block width

CINECA

Effective Bandwidth of Kernels

BLOCKSIZE

16 X16

32X32

KERNEL

Theoretical peak bandwidth

copyRow: Load/store using rows

copyCol: Load/store using cols

copyRow: Load/store using rows

copyCol: Load/store using cols

BANDWIDTH [GB/s]

900.0

626.60

275.42

376.32

170.14

RATIO TO PEAK BANDWITDH (%)

69.62

30.60

41.81

18.90

CINECA

Naive Transpose: Reading Rows versus Reading Columns

__sglobal__

void tranposeNRow(float *out, float *in, const int nx, const int ny) {
unsigned int 1x = blockDim.x * blockldx.x + threadldx.x;
unsigned int 1y = blockDim.y * blockldx.y + threadldx.y;

if (ix < nx && iy < ny) { outlix * ny + iy] = in[iy * nx + ix]; }

BLOCKSIZE KERNEL

Theoretical peak bandwidth

copyRow: Load/store using rows

16 X16

copyCol: Load/store using rows

__global__

void tranposeNCol(float *out, float *in, const int nx, const int ny) {
unsigned int ix = blockDim.x * blockldx.x + threadldx.x;
unsigned int 1y = blockDim.y * blockldx.y + threadldx.y;

if (ix < Nnx && iy < ny) { outliy*nx + ix] = in[ix*ny + iy]; }

BANDWIDTH [GB/s] RATIO TO PEAK BANDWITDH (%)
900.0
273.09 30.34
296.09 32.90

CINECA

Unrolling Transpose: Reading Rows versus Reading Columns

__global__ void transposeUnroll4Row(float *out, float *in, const int nx, __global__ void transposeUnroll4Col(float *out, float *in, const int nx,
const int ny) { const int ny) {
unsigned int ix = blockDim.x * blockldx.x*4 + threadldx x; unsigned int ix = blockDim.x * blockldx.x*4 + threadldx.x;
unsigned int 1y = blockDim.y * blockldx.y + threadldx.y; unsigned int iy = blockDim.y * blockldx.y + threadldx.y;
unsigned int ti = iy*nx + ix; unsigned int to = ix*ny + iy; unsigned int ti = iy*nx + ix; unsigned int to = ix*ny + iy;
// access in columns // access in columns
if (ix+3*blockDim.x < nx && iy < ny) { if (ix+3*blockDim.x < nx && 1y < ny) {
out[to] = in[ti]; out[ti] = in[to];
out[to + ny*blockDim.x] = in[ti+blockDim.x]; out[ti + blockDim.x] = in[to+ blockDim.x*ny];
out[to + ny*2*blockDim.x] = in[ti+2*blockDim.x]; out[ti + 2*blockDim.x] = in[to+ 2*blockDim.x*ny];
out[to + ny*3*blockDim.x] = in[ti+3*blockDim.x]; out[ti + 3*blockDim.x] = in[to+ 3*blockDim.x*ny];
} }

CINECA

Effective Bandwidth of Kernels

BLOCKSIZE KERNEL BANDWIDTH [GB/s] RATIO TO PEAK BANDWITDH (%)
Theoretical peak bandwidth 900.0

NaiveRow: Load/store using rows 317.29 35.25

16 X16
NaiveCol: Load/store using rows 742.74 82.53
NaiveRow: Load/store using rows 160.73 17.86

32X32
NaiveCol: Load/store using rows 492.21 54.69

CINECA

Take away message

GPU is throughput Horsepower

T Offer fast memory access and significant computing power

Importance of compute intensity and memory access patterns

Minimize the available data

) Wasting bandwidth can severely impact performance
Use structured arrays and maintain proper data order

Optimizing Performance

3 About 75% of issues in code adaptation stem from memory access problems |
Techniques for improving occupancy and latency hiding - IO IR Al

Advanced Techniques

4 Efficient use of shared memory

Utilizing CUDA streams for concurrent execution

CINECA

Extra-Slide

.
1

GPU Memory Hierarchy

Global Memory Shared Memory Register Memory

Large, off-chip memory with high latency Small, on-chip memory shared by all Private memory for each individual

and lower bandwidth compared to shared threads within a thread block, offering low thread, with the fastest access but limited
memory. latency and high bandwidth. capacity.

CINECA

Shared Memory Basics

Low Latency High Bandwidth

Shared memory has much lower access latency Shared memory offers significantly higher

compared to global memory, allowing for faster data bandwidth, enabling more efficient data transfer
processing. between threads.

Limited Capacity Thread Block Scope

Shared memory is limited in size, typically ranging Shared memory is shared among all threads within a
from 16KB to 96KB per Streaming Multiprocessor thread block, allowing for efficient inter-thread

(SM). communication.

CINECA

The __shared__ Qualifier

Declaration Scope
The __shared__ qualifier is used to declare shared memory Shared memory variables are only accessible to threads
variables in CUDA kernels within the same thread block

Thread Sync

Threads in a thread block can synchronize using the __syncthreads() intrinsic
Synchronization enables safe data exchange between threads within a block.

CINECA

Shared memory matrix multiplication kernel

__global__ void sharedMemoryMatrixMultiplicationKernel(float* M, float* N, float* P, int Width) {
__sShared__ float sharedM[BLOCK_SIZE] [BLOCK_SIZE]; _ shared__ float sharedN[BLOCK_SIZE] [BLOCK_SIZE];
int row = blockIdx.y * blockDim.y + threadIdx.y; int col = blockIdx.x * blockDim.x + threadIdx.x;

float sum = 0.0f;
for (int m = 0; m < (Width + BLOCK_SIZE - 1) / BLOCK_SIZE; ++m) {
// Load elements into shared memory
if (m * BLOCK_SIZE + threadIdx.x < Width && row < Width) {
sharedM[threadIdx.y] [threadIdx.x] = M[row * Width + m * BLOCK_SIZE + threadIdx.x];
} else {
sharedM[threadIdx.y] [threadIdx.x] = 0.0f; // Fill with zero if out of bounds

if (m * BLOCK_SIZE + threadIdx.y < Width && col < Width) {

sharedN[threadIdx.y] [threadIdx.x] = N[(m * BLOCK_SIZE + threadIdx.y) * Width + col];
} else {

sharedN[threadIdx.y] [threadIdx.x] = 0.0f; // Fill with zero if out of bounds

__syncthreads(); // Synchronize to make sure all threads have loaded their data

// Perform the multiplication
for (int k = 0; k < BLOCK_SIZE; ++k) {
sum += sharedM[threadIdx.y][k] * sharedN[k] [threadIdx.x];

}

__syncthreads(); // Synchronize before loading the next tile
¥
// Write the result to global memory
if (row < Width && col < Width) {

Plrow * Width + coll = sum;

CINECA

Two matrix multiplication on GPU

N Methods Time execution Speedup
Serial 25.18 1
2048x2048 CUDA 0.063 398.29
Shared memory 0.055491 453.92

CINECA

