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Latency is the time it takes for an operation to start and complete, and is commonly expressed in 
microseconds. Bandwidth is the amount of data that can be processed per unit of time, commonly 
expressed as megabytes/sec or gigabytes/sec. Throughput is the amount of operations that can be 
processed per unit of time, commonly expressed as g! ops (which stands for billion ! oating-point 
operations per second), especially in " elds of scienti" c computation that make heavy use of ! oating-
point calculations. Latency measures the time to complete an operation, while throughput measures 
the number of operations processed in a given time unit.

Computer architectures can also be subdivided by their memory organization, which is generally 
classi" ed into the following two types:

 ➤ Multi-node with distributed memory

 ➤ Multiprocessor with shared memory

In a multi-node system, large scale computational engines are constructed from many processors 
connected by a network. Each processor has its own local memory, and processors can communi-
cate the contents of their local memory over the network. Figure 1-7 shows a typical multi-node sys-
tem with distributed memory. These systems are often referred to as clusters.
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FIGURE 1-7

Multiprocessor architectures typically range in size from dual-processor to dozens or hundreds 
of processors. These processors are either physically connected to the same memory (as shown in 
Figure 1-8), or share a low-latency link (such as PCI-Express or PCIe). Although sharing memory 
implies a shared address space, it does not necessarily mean there is a single physical memory. Such 
multiprocessors include both single-chip systems with multiple cores, known as multicore, and com-
puters consisting of multiple chips, each of which might have a multicore design. Multicore architec-
tures have displaced single-core architectures permanently.

The term many-core is usually used to describe multicore architectures with an especially high num-
ber of cores (tens or hundreds). Recently, computer architectures have been transitioning from multi-
core to many-core.

Computer architecture drives parallelism at the core level8 ❘ CHAPTER 1  HETEROGENEOUS PARALLEL COMPUTING WITH CUDA
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GPUs represent a many-core architecture, and have virtually every type of parallelism described 
previously: multithreading, MIMD, SIMD, and instruction-level parallelism. NVIDIA coined the 
phrase Single Instruction, Multiple Thread (SIMT) for this type of architecture.

GPUs and CPUs do not share a common ancestor. Historically, GPUs are graphics accelerators. 
Only recently have GPUs evolved to be powerful, general-purpose, fully programmable, task and 
data parallel processors, ideally suited to tackle massively parallel computing problems.

GPU CORE VERSUS CPU CORE

Even though many-core and multicore are used to label GPU and CPU architec-
tures, a GPU core is quite different than a CPU core.

A CPU core, relatively heavy-weight, is designed for very complex control logic, 
seeking to optimize the execution of sequential programs.

A GPU core, relatively light-weight, is optimized for data-parallel tasks with sim-
pler control logic, focusing on the throughput of parallel programs.

HETEROGENEOUS COMPUTING
In the earliest days, computers contained only central processing units (CPUs) designed to run gen-
eral programming tasks. Since the last decade, mainstream computers in the high-performance com-
puting community have been switching to include other processing elements. The most prevalent is 
the GPU, originally designed to perform specialized graphics computations in parallel. Over time, 
GPUs have become more powerful and more generalized, enabling them to be applied to general-
purpose parallel computing tasks with excellent performance and high power ef! ciency.

Typically, CPUs and GPUs are discrete processing components connected by the PCI-Express bus 
within a single compute node. In this type of architecture, GPUs are referred to as discrete devices.

Most modern processors implement 

Memory (instruction memory and data memory) 

Central processing unit (control unit and arithmetic logic unit)  

Input/Output interfaces

Parallel computing two core technologies 

Computer architecture i.e Hardware aspect  
Parallel programming i.e Software aspect



Computer architecture drives parallelism at the core level
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Paradigm of Heterogeneous Computing
GPU computing is not meant to replace CPU computing. Each approach has advantages for 
certain kinds of programs. CPU computing is good for control-intensive tasks, and GPU computing 
is good for data-parallel computation-intensive tasks. When CPUs are complemented by GPUs, it 
makes for a powerful combination. The CPU is optimized for dynamic workloads marked by short 
sequences of computational operations and unpredictable control ! ow; and GPUs aim at the other 
end of the spectrum: workloads that are dominated by computational tasks with simple control 
! ow. As shown in Figure 1-10, there are two dimensions that differentiate the scope of applications 
for CPU and GPU:

 ➤ Parallelism level

 ➤ Data size

If a problem has a small data size, sophisticated control logic, and/or low-level parallelism, the CPU 
is a good choice because of its ability to handle complex logic and instruction-level parallelism. If 
the problem at hand instead processes a huge amount of data and exhibits massive data parallelism, 
the GPU is the right choice because it has a large number of programmable cores, can support mas-
sive multi-threading, and has a larger peak bandwidth compared to the CPU.

Data size from small to large
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FIGURE 1-10

CPU + GPU heterogeneous parallel computing architectures evolved because the CPU and GPU 
have complementary attributes that enable applications to perform best using both types of proces-
sors. Therefore, for optimal performance you may need to use both CPU and GPU for your appli-
cation, executing the sequential parts or task parallel parts on the CPU and intensive data parallel 
parts on the GPU, as shown in Figure 1-11.

Fundamentals types of parallelism 

• Task parallelisms: multiple independent tasks can run simultaneously, 

distributing functions across multiple cores  

• Data parallelisms: multiple data items can be processed 

simultaneously, distributing the data across multiple cores

Heterogeneous computing

• CUDA programming: well-suited to address problems that can be 

expressed as data-parallel computations



How GPUs are different than CPUs?
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The switch from homogeneous systems to heterogeneous systems is a milestone in the history of 
high-performance computing. Homogeneous computing uses one or more processor of the same 
architecture to execute an application. Heterogeneous computing instead uses a suite of processor 
architectures to execute an application, applying tasks to architectures to which they are well-suited, 
yielding performance improvement as a result.

Although heterogeneous systems provide signi! cant advantages compared to traditional high-
performance computing systems, effective use of such systems is currently limited by the increased 
application design complexity. While parallel programming has received much recent attention, the 
inclusion of heterogeneous resources adds complexity.

If you are new to parallel programming, then you can bene! t from the performance improvements 
and advanced software tools now available on heterogeneous architectures. If you are already a 
good parallel programmer, adapting to parallel programming on heterogeneous architectures is 
straightforward.

Heterogeneous Architecture
A typical heterogeneous compute node nowadays consists of two multicore CPU sockets and two or 
more many-core GPUs. A GPU is currently not a standalone platform but a co-processor to a CPU. 
Therefore, GPUs must operate in conjunction with a CPU-based host through a PCI-Express bus, as 
shown in Figure 1-9. That is why, in GPU computing terms, the CPU is called the host and the GPU 
is called the device.
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FIGURE 1-9

A heterogeneous application consists of two parts:

 ➤ Host code

 ➤ Device code

Host code runs on CPUs and device code runs on GPUs. An application executing on a heteroge-
neous platform is typically initialized by the CPU. The CPU code is responsible for managing the 
environment, code, and data for the device before loading compute-intensive tasks on the device.

With computational intensive applications, program sections often exhibit a rich amount of data 
parallelism. GPUs are used to accelerate the execution of this portion of data parallelism. When a 

CPU (host): minimize latency  GPU(Device): maximize throughput  



GPU-accelerated computing started a new era

Why Computing Perf/Watt Matters?

Traditional CPUs are
not economically feasible

2.3 PFlops 7000 homes

7.0 
Megawatts

7.0 
Megawatts

CPU
Optimized for 
Serial Tasks

GPU Accelerator
Optimized for Many 

Parallel Tasks

GPU-accelerated  computing
started a new era

Why Computing Perf/Watt Matters?

Traditional CPUs are
not economically feasible

2.3 PFlops 7000 homes

7.0 
Megawatts

7.0 
Megawatts

CPU
Optimized for 
Serial Tasks

GPU Accelerator
Optimized for Many 

Parallel Tasks

GPU-accelerated  computing
started a new era

Traditional CPUs are not economically feasible

Why computing perf/Watt matters?



GPU architecture

GPU architecture is built around a scalable array of SM

• CUDA cores  
• Shared Memory/L1 Cache  
• Register File  
• Load/Store Units   
• Special Function Units  
• Warp Scheduler



Latency Hiding
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Latency Hiding
An SM relies on thread-level parallelism to maximize utilization of its functional units. Utilization 
is therefore directly linked to the number of resident warps. The number of clock cycles between 
an instruction being issued and being completed is de! ned as instruction latency. Full compute 
resource utilization is achieved when all warp schedulers have an eligible warp at every clock cycle. 
This ensures that the latency of each instruction can be hidden by issuing other instructions in other 
resident warps.

Compared with C programming on the CPU, latency hiding is particularly important in CUDA pro-
gramming. CPU cores are designed to minimize latency for one or two threads at a time, whereas 
GPUs are designed to handle a large number of concurrent and lightweight threads in order to max-
imize throughput. GPU instruction latency is hidden by computation from other warps.

When considering instruction latency, instructions can be classi! ed into two basic types:

 ➤ Arithmetic instructions

 ➤ Memory instructions

Arithmetic instruction latency is the time between an arithmetic operation starting and its output 
being produced. Memory instruction latency is the time between a load or store operation being issued 
and the data arriving at its destination. The corresponding latencies for each case are approximately:

 ➤ 10-20 cycles for arithmetic operations

 ➤ 400-800 cycles for global memory accesses

Figure 3-15 illustrates a simple case for an execution pipeline in which warp 0 stalls. The warp 
scheduler picks up other warps to execute and then executes warp 0 when it is eligible again.

Warp 3Warp 2

Warp 6 Warp 5

Time

Warp Scheduler 0

Warp Scheduler 1 Warp 1

no eligible warps to
execute

warp 0 waiting while SM still busy

Warp 0 Warp 0 Warp 4

FIGURE 3-15

You may wonder how to estimate the number of active warps required to hide latency. Little’s 
Law can provide a reasonable approximation. Originally a theorem in queue theory, it can also be 
applied to GPUs:

Number of Required Warps = Latency × Throughput



GPU Accelerators 

GPU acceleration for data-parallel tasks

Two important features that describe GPU capability

• Number of CUDA cores  
• Memory size

GPU Performance Metrics: Throughput vs. Latency

• Peak computational performance  
measures in Tflops or Pflops, reflects a device's ability to perform floating-
point calculations rapidly and efficiently 

• Memory bandwidth  
the rate at which data can be transferred between the CPU and memory, 
measured in gigabytes per second (GB/s). It directly impacts the speed of 
data-intensive applications.



NVIDIA Tesla A100 with 54 Billion Transistors

Announced and released on May 14, 2020 was the Ampere-based A100 accelerator. With 7nm 
technologies, the A100 has 54 billion transistors and features 19.5 teraflops of FP32 performance, 
6912 CUDA cores, 40GB of graphics memory, and 1.6TB/s of graphics memory bandwidth. The 
A100 80GB model announced in Nov 2020, has 2.0TB/s graphics memory bandwidth.

• With 7nm technologies 

• 19.5 teraflops of FP32 performance 

• 6912 CUDA cores, 40GB of graphics memory, and 1.6TB/s of graphics memory bandwidth  

• The A100 80GB model announced in Nov 2020, has 2.0TB/s graphics memory bandwidth

NVIDIA Tesla A100 with 54 Billion Transistors

Announced and released on May 14, 2020 was the Ampere-based A100 accelerator. With 7nm 
technologies, the A100 has 54 billion transistors and features 19.5 teraflops of FP32 performance, 
6912 CUDA cores, 40GB of graphics memory, and 1.6TB/s of graphics memory bandwidth. The 
A100 80GB model announced in Nov 2020, has 2.0TB/s graphics memory bandwidth.

NVIDIA Tesla A100 with 54 Billion Transistor



TOP10 System - November 2023

1. Frontier ORNL 

AMD CPUs 
AMD GPUs 

HPE Slingshot 
1679 pflops

2. Aurora ANL 

Intel CPUs 
Intel GPUs 

HPE Slingshot 
1059 pflops

3. Eagle Microsoft 

Intel CPUs 
Nvidia GPUs 

Nvidia Inf 
846 pflops

4. Fugaku RIKEN 

Fujitsu ARM 

Fujitsu Tofu 
537 pflops

5. Lumi CSC 

AMD CPUs 
AMD GPUs 

HPE Slingshot 
531 pflops

6. Leonardo CINECA 

Intel CPUs 
Nvidia GPUs 

Nvidia Inf 
304 pflops

https://top500.org/lists/top500/2023/11/70 % of FLOP/s by GPUs, > 100 000 GPUs in Frontier+Aurora

TOP10 System - November 2023
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FIGURE 1-11

Writing code this way ensures that the characteristics of the GPU and CPU complement each other, 
leading to full utilization of the computational power of the combined CPU + GPU system. To sup-
port joint CPU + GPU execution of an application, NVIDIA designed a programming model called 
CUDA. This new programming model is the focus for the rest of this book.

CPU THREAD VERSUS GPU THREAD

Threads on a CPU are generally heavyweight entities. The operating system must 
swap threads on and off CPU execution channels to provide multithreading capa-
bility. Context switches are slow and expensive.

Threads on GPUs are extremely lightweight. In a typical system, thousands of 
threads are queued up for work. If the GPU must wait on one group of threads, it 
simply begins executing work on another.

CPU cores are designed to minimize latency for one or two threads at a time, 
whereas GPU cores are designed to handle a large number of concurrent, light-
weight threads in order to maximize throughput.

Today, a CPU with four quad core processors can run only 16 threads concurrently, 
or 32 if the CPUs support hyper-threading.

Modern NVIDIA GPUs can support up to 1,536 active threads concurrently per 
multiprocessor. On GPUs with 16 multiprocessors, this leads to more than 24,000 
concurrently active threads.

H
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D
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e

GPUs serve as a co-processor, not a standalone platform



Applications

Libraries OpenACC/OpenMP 
Directives CUDA

Drop-in Acceleration Easy Accelerations Maximum Flexibility

Increasing programming effort 

Productivity PerformancePortability

Ways to parallels an applications on Nvidia GPUs



SYCL / ONEAPI 
HACKATHON 
@ CINECA
Empowering the Future of High-Performance 
Computing with SYCL

SYCL / ONEAPI 
HACKATHON 
@ CINECA
Empowering the Future of High-Performance 
Computing with SYCL

Register now!

https://hpc-portal.eu/node/2190

https://hpc-portal.eu/node/2190

Follow the link:
https://hpc-

portal.eu/node/2190

… or scan the QR code For further info / questions:
a.masini@cineca.it



Performance 

• Massive Parallelism: scale to 1000’s of cores, 10000000’s of parallel thread 

• Massive Gain: substantial performance improvements in tasks that can be divided into smaller, concurrent operations

Scalability 

• Efficiently maps to the GPU architecture: well-suited for leveraging GPU capabilities 

• Wide Range of Hardware: applications can scale from small embedded devices to large supercomputers

Flexibility 

• Programming Languages: supports various programming languages 

• Easy to use: let programmers strip away complexity associated with parallel computing and focus on parallel algorithms

Why CUDA?
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driver API. Each function of the runtime API is broken down into more basic operations issued to 
the driver API.

CPU
Applications

CUDA Libraries

CUDA Runtime

CUDA Driver

GPU

FIGURE 1-13

RUNTIME API VERSUS DRIVER API

There is no noticeable performance difference between the runtime and driver 
APIs. How your kernels use memory and how you organize your threads on the 
device have a much more pronounced effect.

These two APIs are mutually exclusive. You must use one or the other, but it is not 
possible to mix function calls from both. All examples throughout this book use 
the runtime API.

A CUDA program consists of a mixture of the following two parts:

 ➤ The host code runs on CPU.

 ➤ The device code runs on GPU.

NVIDIA’s CUDA nvcc compiler separates the device code from the host code during the compila-
tion process. As shown in Figure 1-14, the host code is standard C code and is further compiled 
with C compilers. The device code is written using CUDA C extended with keywords for labeling 
data-parallel functions, called kernels. The device code is further compiled by nvcc. During the 
link stage, CUDA runtime libraries are added for kernel procedure calls and explicit GPU device 
manipulation.

What is CUDA?

CUDA : Compute Unified Device Architecture

• Enable heterogeneous systems (i.e., CPU+GPU) 

• A new architecture instruction set called PTX (Parallel Thread eXecution) 
to match GPU typical hardware  

• Parallelism allows developers to use GPUs for general purpose processing 
(GPGPU) 

The SDK includes

• A Drivers, runtimes and API  

• Compiler wrappers for complain coda code ( nvcc) 

• Libraries (cuBLAS, cuFFT, cuSolver) debuggers (cuda-gdb, cuda-memcheck), 
profilers (nvprof, nView), etc 

• CUDA-aware languages C/C++, Fortran, PyCUDA, CUDA.Jl 



CUDA programmer perspective  

• Heterogenous computing: combination of CPU and GPU 

• Host: The CPU and its memory 

• Device: The GPU and its memory  

• Execution: Programs run a on the host and launch parallel code (kernels) on the device 
by many threads

Programming model view 

• Kernels: A function written in CUDA C/C++ and executed on the GPU 

• Launch configurations: 

• Threads: Smallest unit of execution in CUDA 

• Block: A collection of threads 

• Grid: A collection of blocks 

• Memory management: Allocate and transfer data between host (CPU) and device (GPU)

CUDA programming modelCUDA execution model



CUDA enhances your control over memory and thread hierarchies, optimizing execution and scheduling with:

Thread hierarchy structure Memory hierarchy structure 

Compiling and running CUDA enable application



Embarrassing parallel code

Vector Addition

• Simple operation: a memory-bound operation 

• Natural Fit for GPUs: Each element of a vector are 

independent 

• Scalability: Larger vectors benefit from GPU or 

multi-core CPU parallelism, offering faster 

computation than serial processing. 

     sumArraysOnHost(float *A, float *B, float *C, const int N)

      { for (int idx=0; idx<N; idx++)
          C[idx] = A[idx] + B[idx]; 
   } 

   int main(int argc, char **argv) 
   { 

.. 

Start = cpuSecond();

sumArrayOnCPU(h_A, h_B, h_C, N);

Double cpuTime = cpuSecond() - start;

printf(“CPU Execution Time: %f second \n”, cpuTime);

..
       }

// CPU function



CUDA differentiates between these functions by using one of the following function type qualifiers as a prefix 

• __global__  qualifier for kernels that can be invoked globally 

• __host__ functions called from host and executed on the host  

• __device__ functions called from device and execute on the device (a function that is called from a kernel needs the 
__device__ qualifier)

Declaring Host-Called, Device-Executed Functions



#include <stdio.h> 

__global__ void onGPU()  

{ 
printf(“This function runs on GPU\n”); 
}  

int main() 
{ 

onGPU<<<1, 1>>>(); 

cudaDeviceSynchronize(); 

}

__global__ void() 

Defines a kernel  
can be invoked globally either from CPU or GPU

Execution configuration 

Kernel_name <<<numBlocks, numThreads>>> (arguments); 
Specifies grid and block dimensions

Synchronization 

Launching kernel is asynchronous  
cudaDeviceSynchronize(): wait until device code completeness 

Parallel kernel execution

// Kernel  
__global__ 
 sumArraysOnDevice(float *A, float *B, float *C, const int N) 
{ 
  int idx = threadIdx.x + (blockIdx.x * blockDim.x) 
  if(idx<N) 
   C[idx] = A[idx] + B[idx]; 

}  

int main(int argc, char **argv) 
{ 

.. 
start = cpuSecond(); 
sumArraysOnGPU<<<gridSize, blockSize>>>(d_A, d_B, d_C, N); 
cudaDeviceSynchronize(); 
double gpuTime = cpuSecond() - start; 
printf("GPU Execution Time: %f seconds\n", gpuTime); 
..  

}

Step to Launching a CUDA Kernel



CUDA launches arrays of parallel threads

Thread block

A block has a fixed number of threads which are guaranteed 
to be running simultaneously on the same SM

Thread block



0 1 2 3 4

float x = input[threadIdx.x]; 

float y = fun(x); 

output[threadIdx.x] = y;

A CUDA kernel is executed as a grid (array) of 
threads 

• All threads in a grid run the same kernel code 

• Each thread has a unique ID: threadIdx 

• Threads are similar to data-parallel tasks. 

• Threads independently execute the same 
operation on a data subset 

• Follows SPMD model i.e the Single Program 
Multiple Data => SIMT Single Instructions Multiple 
threads 

th
re
ad
Id
x.
x

For fully utilisation of  the parallel processing power of the GPU 

CUDA launches arrays of parallel threads



float *A, *B, *C = …. ; for (int I = 0; I <N; I++ ) A[I] = B[I] + C[I]

Consider how computations will be distributed between threads for the following loop (N >> threads count):

SIMD: a single sequential stream of SIMD instructions for CPU with AVX-512 support (512-bit vector registers - Xeon Phi and 2015’ CPU)

SIMT: Multiple instruction streams of scalar instructions for CUDA/GPU with 32 threads per warps: | thread is lightweight  GPU-thread

SIMT allows CUDA GPU to perform “vector” computations on scalar cores, which is must easier, than getting compiler to autovectorize on CPU and 
much easier than to vectorise the code manually

SIMT VS. SIMD execution model

• SIMD describes a class of instructions which perform the 
same operations on multiple registers simultaneously 

•  Converting an algorithm to use SIMD is usually called 
“Vectorizing”   

• a SIMD register (or a vector register) can hold many values 
(2 - 16 values or more) of a single type  

• Vectorisation helps you write code which has good access 
patterns to maximise bandwidth

N. Shukla, OpenMP for HPC  

CINECA Bologna, Italy | July 12th 2021

Vectorisation is referred as SIMD parallelism

Vector length

+

+

do i = 1, 16
    C[i] = A[i] + B[I]
end do

Scalar instructions 
32 loads 
16 adds
16 stores

SIMD instructions 
8 loads 
4 adds
4 stores

Why vectorisation?  

• Operates on entire blocks of data, called vector
• In OpenMP, vectorisation is referred to as SIMD 

parallelism
• It gives you more compute per cycle
• A single instruction operates upon multiple data 

elements concurrently
• Hence may increase the FLOP/s rate of the 

processor 
• SIMD instruction use special SIMD registers 

containing multiple data elements
• Vectors help make good use of the memory 

hierarchy
• Vectorisation helps you write code which has 

good access patterns to maximise bandwidth

Both SIMD and SIMT achieve parallelism by broadcasting a single instruction to multiple execution units

SIMT VS. SIMD execution model



https://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html

SIMT thread registers 
A loose extension of SIMD which is what CUDA’s computational model is, 
although there is key differences 

• Single instruction, multiple registers  
• Single instructions multiple addresses  

i.e. parallel memory access! 
• Single instruction, multiple flow paths  

if statements are allowed!

SIMT allows  

• CUDA GPU to perform “vector” computations on scalar cores 
• Much easier to vectorise than getting compiler to autovectorize on CPU

a[I] a[I+1] a[I+2] a[I+3]

b[I] a[I+1] b[I+2] b[I+3]

a a a a

b b b b

I I+1 I+2 I+3

… … … …

Both SIMD and SIMT achieve parallelism by broadcasting a single instruction to multiple execution units

SIMT VS. SIMD execution model



Architecture Traditional CPUs Utilized by NVIDIA GPUs

Execution Unit Multiple data lanes Multiple threads (warps)

Flexibility Low High

Branch Handling No support for divergence Supports thread divergence

Best Suited For
Homogeneous data operations 

Dynamic control flow applications

Common Usage CPU computing Vector processing on GPUs

Feature SIMD SIMT

Both SIMD and SIMT achieve parallelism by broadcasting a single instruction to multiple execution units

SIMT VS. SIMD execution model



CUDA launches arrays of parallel threads

Thread block

Warp

thread 0…31 thread 32…63

Warp

thread 64…95

Warp

thread 96…127

Warp

thread 128…159

Warp

thread 160…191

Warp

Thread block

The block of threads is broken up into “warps” of 32 threads 

A “warp” is the vector element of the GPU 



What is warp, and why is it 
important?
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two warps and issue one instruction from each warp to a group of 16 CUDA cores, 16 load/store units, 
or 4 special function units (illustrated in Figure 3-4). The Fermi architecture, compute capability 2.x, can 
simultaneously handle 48 warps per SM for a total of 1,536 threads resident in a single SM at a time.

Warp Scheduler

Instruction Dispatch Unit

Warp 8 instruction 11

Warp 2 instruction 42

Warp 14 instruction 95

tim
e

Warp 8 instruction 12

Warp 14 instruction 96

Warp 2 instruction 43

Warp Scheduler

Instruction Dispatch Unit

Warp 9 instruction 11

Warp 3 instruction 33

Warp 15 instruction 95

Warp 9 instruction 12

Warp 3 instruction 34

Warp 15 instruction 96

FIGURE 3-4

One key feature of Fermi is the 64 KB on-chip confi gurable memory, which is partitioned between 
shared memory and L1 cache. For many high-performance applications, shared memory is a key 
enabler for performance. Shared memory allows threads within a block to cooperate, facilitates 
extensive reuse of on-chip data, and greatly reduces off-chip traffi c. CUDA provides a runtime API 
that can be used to adjust the amount of shared memory and L1 cache. Modifying the on-chip mem-
ory confi guration can lead to performance improvements depending on the usage of shared memory 
or cache in a given kernel. This topic will be covered in more detail in Chapters 4 and 5.

Fermi also supports concurrent kernel execution: multiple kernels launched from the same applica-
tion context executing on the same GPU at the same time. Concurrent kernel execution allows pro-
grams that execute a number of small kernels to fully utilize the GPU, as illustrated in Figure 3-5. 
Fermi allows up to 16 kernels to be run on the device at the same time. Concurrent kernel execution 
makes the GPU appear more like a MIMD architecture from the programmer’s perspective.

The Kepler Architecture
The Kepler GPU architecture, released in the fall of 2012, is a fast and highly effi cient, high-perfor-
mance computing architecture. Kepler features make hybrid computing even more accessible to you. 
Figure 3-6 illustrates the Kepler K20X chip block diagram, containing 15 streaming multiprocessors 
(SMs) and six 64-bit memory controllers. Three important innovations in the Kepler architecture 
are:

 ➤ Enhanced SMs

 ➤ Dynamic Parallelism

 ➤ Hyper-Q

Hardware Multithreading  

• NVIDIA SM schedules threads in warps (groups of 
32 threads)  

• Warp simply means a group of threads that are 
scheduled together to execute the same 
instructions in lockstep. 

• Execution contest stays on chip  

• No overhead for switching warps 

• Volta SM has 4 warp schedulers, each one is 
responsible for 

- feeding 32 CUDA cores 

- 8 load/store units 

- 8 special functions unit

What is WARP?
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CONTROL LOGIC

Hardware view

Warps

Execution

Multiprocessor

Logical view

Thread Block

32 threads

32 threads

32 threads

32 threads

32 threads

FIGURE 3-10

Thread blocks can be confi gured to be one-, two-, or three-dimensional. However, from the hard-
ware perspective, all threads are arranged one-dimensionally. Each thread has a unique ID in a 
block. For a one-dimensional thread block, the unique thread ID is stored in the CUDA built-in 
variable threadIdx.x, and threads with consecutive values for threadIdx.x are grouped into 
warps. For example, a one-dimensional thread block with 128 threads will be organized into 4 
warps as follows:

Warp 0: thread  0, thread  1, thread  2, ... thread 31
Warp 1: thread 32, thread 33, thread 34, ... thread 63
Warp 3: thread 64, thread 65, thread 66, ... thread 95
Warp 4: thread 96, thread 97, thread 98, ... thread 127

The logical layout of a two or three-dimensional thread block can be converted into its one-dimen-
sional physical layout by using the x dimension as the innermost dimension, the y dimension as the 
second dimension, and the z dimension as the outermost. For example, given a 2D thread block, 
a unique identifi er for each thread in a block can be calculated using the built-in threadIdx and 
blockDim variables:

threadIdx.y * blockDim.x + threadIdx.x.

The same calculation for a 3D thread block is as follows:

threadIdx.z * blockDim.y * blockDim.x + threadIdx.y * blockDim.x + threadIdx.x

The number of warps for a thread block can be determined as follows:

WarpsPerBlock ceil
ThreadsPerBlock

warpSize
=  

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

Thus, the hardware always allocates a discrete number of warps for a thread block. A warp is never 
split between different thread blocks. If thread block size is not an even multiple of warp size, some 
threads in the last warp are left inactive. Figure 3-11 illustrates a two-dimensional thread block with 
40 threads in the x dimension and 2 threads in the y dimension. From the application perspective, 
there are 80 threads laid out in a two-dimensional grid.

The hardware will allocate 3 warps for this thread block, resulting in a total of 96 hardware threads 
to support 80 software threads. Note that the last half-warp is inactive. Even though these threads 
are unused they still consume SM resources, such as registers.
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Warp 3: thread 64, thread 65, thread 66, ... thread 95
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The logical layout of a two or three-dimensional thread block can be converted into its one-dimen-
sional physical layout by using the x dimension as the innermost dimension, the y dimension as the 
second dimension, and the z dimension as the outermost. For example, given a 2D thread block, 
a unique identifi er for each thread in a block can be calculated using the built-in threadIdx and 
blockDim variables:

threadIdx.y * blockDim.x + threadIdx.x.

The same calculation for a 3D thread block is as follows:
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The number of warps for a thread block can be determined as follows:
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Thus, the hardware always allocates a discrete number of warps for a thread block. A warp is never 
split between different thread blocks. If thread block size is not an even multiple of warp size, some 
threads in the last warp are left inactive. Figure 3-11 illustrates a two-dimensional thread block with 
40 threads in the x dimension and 2 threads in the y dimension. From the application perspective, 
there are 80 threads laid out in a two-dimensional grid.

The hardware will allocate 3 warps for this thread block, resulting in a total of 96 hardware threads 
to support 80 software threads. Note that the last half-warp is inactive. Even though these threads 
are unused they still consume SM resources, such as registers.
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variable threadIdx.x, and threads with consecutive values for threadIdx.x are grouped into 
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warps as follows:

Warp 0: thread  0, thread  1, thread  2, ... thread 31
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The logical layout of a two or three-dimensional thread block can be converted into its one-dimen-
sional physical layout by using the x dimension as the innermost dimension, the y dimension as the 
second dimension, and the z dimension as the outermost. For example, given a 2D thread block, 
a unique identifi er for each thread in a block can be calculated using the built-in threadIdx and 
blockDim variables:

threadIdx.y * blockDim.x + threadIdx.x.

The same calculation for a 3D thread block is as follows:

threadIdx.z * blockDim.y * blockDim.x + threadIdx.y * blockDim.x + threadIdx.x

The number of warps for a thread block can be determined as follows:
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Thus, the hardware always allocates a discrete number of warps for a thread block. A warp is never 
split between different thread blocks. If thread block size is not an even multiple of warp size, some 
threads in the last warp are left inactive. Figure 3-11 illustrates a two-dimensional thread block with 
40 threads in the x dimension and 2 threads in the y dimension. From the application perspective, 
there are 80 threads laid out in a two-dimensional grid.

The hardware will allocate 3 warps for this thread block, resulting in a total of 96 hardware threads 
to support 80 software threads. Note that the last half-warp is inactive. Even though these threads 
are unused they still consume SM resources, such as registers.
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Thread blocks can be confi gured to be one-, two-, or three-dimensional. However, from the hard-
ware perspective, all threads are arranged one-dimensionally. Each thread has a unique ID in a 
block. For a one-dimensional thread block, the unique thread ID is stored in the CUDA built-in 
variable threadIdx.x, and threads with consecutive values for threadIdx.x are grouped into 
warps. For example, a one-dimensional thread block with 128 threads will be organized into 4 
warps as follows:

Warp 0: thread  0, thread  1, thread  2, ... thread 31
Warp 1: thread 32, thread 33, thread 34, ... thread 63
Warp 3: thread 64, thread 65, thread 66, ... thread 95
Warp 4: thread 96, thread 97, thread 98, ... thread 127

The logical layout of a two or three-dimensional thread block can be converted into its one-dimen-
sional physical layout by using the x dimension as the innermost dimension, the y dimension as the 
second dimension, and the z dimension as the outermost. For example, given a 2D thread block, 
a unique identifi er for each thread in a block can be calculated using the built-in threadIdx and 
blockDim variables:

threadIdx.y * blockDim.x + threadIdx.x.

The same calculation for a 3D thread block is as follows:

threadIdx.z * blockDim.y * blockDim.x + threadIdx.y * blockDim.x + threadIdx.x

The number of warps for a thread block can be determined as follows:

WarpsPerBlock ceil
ThreadsPerBlock

warpSize
=  

⎛
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Thus, the hardware always allocates a discrete number of warps for a thread block. A warp is never 
split between different thread blocks. If thread block size is not an even multiple of warp size, some 
threads in the last warp are left inactive. Figure 3-11 illustrates a two-dimensional thread block with 
40 threads in the x dimension and 2 threads in the y dimension. From the application perspective, 
there are 80 threads laid out in a two-dimensional grid.

The hardware will allocate 3 warps for this thread block, resulting in a total of 96 hardware threads 
to support 80 software threads. Note that the last half-warp is inactive. Even though these threads 
are unused they still consume SM resources, such as registers.

Figure 2.13: Each thread computing the square of its own value

One limitation on blocks is that each block can hold up to 512 threads. In trivial cases where

each thread is independent of other threads (such as square array in the example above) the grid

can simply be augmented to contain more blocks. Grid dimensions are limited to 65535 x 65535 x 1

blocks. For situations where each thread is dependent of other threads such as the computation of a

dot product that exceeds 512 in length, A more sophisticated technique is required. The programmer

needs to be creative and craft a design that allow threads to be mapped to larger regions, and at the

same time not overlap the work of other threads. Taking the square array example, if the problem

deals with 1024 elements, each thread can be responsible for data at indices threadIdx and threadIdx

+ blockDim.x, where blockDim.x = 512.

Once a kernel is launched, the corresponding grid and block structure is created. The blocks

are then assigned to a SM by the SMC (see CUDA architecture). Each SM executes up to 8 blocks

concurrently. Remaining blocks are queued up until a SM is free. The SMCs are smart enough to

monitor resource usage and not assign blocks to SMs that are deficient of resources. This ensures

that all SMs are functioning to its maximum capacity. As shown in Figure 2.14[4], the more SM a

graphics card has, the more concurrent blocks can be executed. Although each block can contain

up to 512 threads, and each SM can execute up to a maximum of 8 concurrent blocks, it is not

true that at any given time a SM can execute 4096 concurrent threads. Resources are required to

maintain the thread and block IDs and its execution state. Due to hardware limitations the SM can
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Thread blocks can be confi gured to be one-, two-, or three-dimensional. However, from the hard-
ware perspective, all threads are arranged one-dimensionally. Each thread has a unique ID in a 
block. For a one-dimensional thread block, the unique thread ID is stored in the CUDA built-in 
variable threadIdx.x, and threads with consecutive values for threadIdx.x are grouped into 
warps. For example, a one-dimensional thread block with 128 threads will be organized into 4 
warps as follows:

Warp 0: thread  0, thread  1, thread  2, ... thread 31
Warp 1: thread 32, thread 33, thread 34, ... thread 63
Warp 3: thread 64, thread 65, thread 66, ... thread 95
Warp 4: thread 96, thread 97, thread 98, ... thread 127

The logical layout of a two or three-dimensional thread block can be converted into its one-dimen-
sional physical layout by using the x dimension as the innermost dimension, the y dimension as the 
second dimension, and the z dimension as the outermost. For example, given a 2D thread block, 
a unique identifi er for each thread in a block can be calculated using the built-in threadIdx and 
blockDim variables:

threadIdx.y * blockDim.x + threadIdx.x.

The same calculation for a 3D thread block is as follows:

threadIdx.z * blockDim.y * blockDim.x + threadIdx.y * blockDim.x + threadIdx.x

The number of warps for a thread block can be determined as follows:

WarpsPerBlock ceil
ThreadsPerBlock

warpSize
=  

⎛
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⎞
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Thus, the hardware always allocates a discrete number of warps for a thread block. A warp is never 
split between different thread blocks. If thread block size is not an even multiple of warp size, some 
threads in the last warp are left inactive. Figure 3-11 illustrates a two-dimensional thread block with 
40 threads in the x dimension and 2 threads in the y dimension. From the application perspective, 
there are 80 threads laid out in a two-dimensional grid.

The hardware will allocate 3 warps for this thread block, resulting in a total of 96 hardware threads 
to support 80 software threads. Note that the last half-warp is inactive. Even though these threads 
are unused they still consume SM resources, such as registers.

Groups (vectors) of 32 consecutive threads of a block that are executed in parallel in hardware
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Thread blocks can be con! gured to be one-, two-, or three-dimensional. However, from the hard-
ware perspective, all threads are arranged one-dimensionally. Each thread has a unique ID in a 
block. For a one-dimensional thread block, the unique thread ID is stored in the CUDA built-in 
variable threadIdx.x, and threads with consecutive values for threadIdx.x are grouped into 
warps. For example, a one-dimensional thread block with 128 threads will be organized into 4 
warps as follows:

Warp 0: thread  0, thread  1, thread  2, ... thread 31
Warp 1: thread 32, thread 33, thread 34, ... thread 63
Warp 3: thread 64, thread 65, thread 66, ... thread 95
Warp 4: thread 96, thread 97, thread 98, ... thread 127

The logical layout of a two or three-dimensional thread block can be converted into its one-dimen-
sional physical layout by using the x dimension as the innermost dimension, the y dimension as the 
second dimension, and the z dimension as the outermost. For example, given a 2D thread block, 
a unique identi! er for each thread in a block can be calculated using the built-in threadIdx and 
blockDim variables:

threadIdx.y * blockDim.x + threadIdx.x.

The same calculation for a 3D thread block is as follows:

threadIdx.z * blockDim.y * blockDim.x + threadIdx.y * blockDim.x + threadIdx.x

The number of warps for a thread block can be determined as follows:

WarpsPerBlock ceil
ThreadsPerBlock

warpSize
=  











Thus, the hardware always allocates a discrete number of warps for a thread block. A warp is never 
split between different thread blocks. If thread block size is not an even multiple of warp size, some 
threads in the last warp are left inactive. Figure 3-11 illustrates a two-dimensional thread block with 
40 threads in the x dimension and 2 threads in the y dimension. From the application perspective, 
there are 80 threads laid out in a two-dimensional grid.

The hardware will allocate 3 warps for this thread block, resulting in a total of 96 hardware threads 
to support 80 software threads. Note that the last half-warp is inactive. Even though these threads 
are unused they still consume SM resources, such as registers.

• An implementation technique, not part of the CUDA 
programming model  

• basic unit of execution in an SM

Warps as Scheduling Units



Latency hiding 

• Memory Access Latency: Multiple warps can hide memory access latency by switching to another ready warp when one warp is waiting for data 

• Instruction Pipeline Latency: Keeps the execution units busy while other warps are stalled due to dependencies or resource constraints

Resource Utilisation 

• Maximizing Throughput: More warps allow for better utilization of SM resources (ALUs, memory bandwidth) 

• Load Balancing: Distributes the workload evenly across the available execution units

Parallelism 

• Enhancing Parallel execution: Multiple warps increase the parallelism, enabling more threads to be processed concurrently 

• Improved Performance: Higher parallelism leads to better performance and throughput for data-intensive applications

Why do we need to have so many warps in an SM?Why do we need to have so many warps in an SM?



GPU Thread hierarchy



GPU Thread hierarchy 

….

Multi-processors: tens of thousands

GPU consists of Hundreds of thousands of grids

…. ….

1024/32  = 32 warps 

thread 0…31

Block 1024 threads

Warp Warp Warp

Warp

GPU Thread hierarchy



Grid

Block 0

Block 0

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

Block 2

• In order to compute N elements on the GPU 
in parallel, at least N concurrent threads must 
be created on the device  

• GPU threads are grouped together in teams 
or blocks of threads  

• Threads belonging to the same block or team 
can cooperate togheter exchanging data 
through a shared memory cache area  

• Each block of threads will be executed 
independently 

• No assumption is made on the blocks 
execution order

(Thread ∈ Block ∈ Grid)

CUDA- provided variables describe its executing thread, block, and grid

Block 1

Kernel execution across Thread, Block, and Grid



gridDim.x: number of blocks in the grid, in this case 2 

GPU 
performWork<<<2,4>>>()

2

CUDA- provided variables describe its executing thread, block, and grid
Kernel execution across Thread, Block, and Grid



gridDim.x: number of blocks in the grid, in this case 2 

GPU 
performWork<<<2,4>>>()

2

CUDA- provided variables describe its executing thread, block, and grid

blockIdx.x: index of a blocks in a grid

GPU 
performWork<<<2,4>>>()

blockDim.x: number of threads per block

blockDim.x = 4

blockIdx.x = 0 blockIdx.x = 1

CUDA- provided variables describe its executing thread, block, and grid
Kernel execution across Thread, Block, and Grid



threadIdx.x: index of the thread with a block

GPU 
performWork<<<2,4>>>()

0 1 2 3 0 1 2 3

CUDA- provided variables describe its executing thread, block, and grid
Kernel execution across Thread, Block, and Grid



0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

CUDA- provided variables describe its executing thread, block, and grid

for blockIdx.x = 0 
i = 0 * 8 + threadIdx.x  = { 0, 1, 2, ... , 7 }

for blockIdx.x = 3 
i = 0 * 8 + threadIdx.x  = { 0, 1, 2, ... , 7 }

Choose the optimal block size  

• A limited number of threads (1024) can fit inside a thread block 

• To increase parallelism, we need to coordinate work among thread blocks. 

• This is achieved by mapping element of data vector to threads using global index  = threadIdx.x + blockIdx.x*blockDim.x

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

CUDA- provided variables describe its executing thread, block, and grid

for blockIdx.x = 0 
i = 0 * 8 + threadIdx.x  = { 0, 1, 2, ... , 7 }

for blockIdx.x = 3 
i = 0 * 8 + threadIdx.x  = { 0, 1, 2, ... , 7 }

Choose the optimal block size  

• A limited number of threads (1024) can fit inside a thread block 

• To increase parallelism, we need to coordinate work among thread blocks. 

• This is achieved by mapping element of data vector to threads using global index  = threadIdx.x + blockIdx.x*blockDim.x

Kernel execution across Thread, Block, and Grid
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threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

threadIdx.x threadIdx.x threadIdx.x

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

FIGURE 2-6

Because the data is stored linearly in global memory, you can use the built-in variables blockIdx.x 
and threadIdx.x to:

 ➤ Identify a unique thread in the grid.

 ➤ Establish a mapping between threads and data elements.

If you group all 32 elements into one block, then you just have one block as follows:

kernel_name<<<1, 32>>>(argument list);

If you let each block just have one element, you have 32 blocks as follows:

kernel_name<<<32, 1>>>(argument list);

A kernel call is asynchronous with respect to the host thread. After a kernel is invoked, control 
returns to the host side immediately. You can call the following function to force the host 
application to wait for all kernels to complete.

cudaError_t cudaDeviceSynchronize(void);

Some CUDA runtime APIs perform an implicit synchronization between the host and the device. 
When you use cudaMemcpy to copy data between the host and device, implicit synchronization at 
the host side is performed and the host application must wait for the data copy to complete.

cudaError_t cudaMemcpy(void* dst, const void* src, size_t count, cudaMemcpyKind kind);

It starts to copy after all previous kernel calls have completed. When the copy is ! nished, control 
returns to the host side immediately.

ASYNCHRONOUS BEHAVIORS

Unlike a C function call, all CUDA kernel launches are asynchronous. Control 
returns to the CPU immediately after the CUDA kernel is invoked.

Writing Your Kernel
A kernel function is the code to be executed on the device side. In a kernel function, you de! ne the 
computation for a single thread, and the data access for that thread. When the kernel is called, many 
different CUDA threads perform the same computation in parallel. A kernel is de! ned using the 
__global__ declaration speci! cation as shown:

__global__ void kernel_name(argument list);

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

CUDA- provided variables describe its executing thread, block, and grid

for blockIdx.x = 0 
i = 0 * 8 + threadIdx.x  = { 0, 1, 2, ... , 7 }

for blockIdx.x = 3 
i = 0 * 8 + threadIdx.x  = { 0, 1, 2, ... , 7 }

Choose the optimal block size  

• A limited number of threads (1024) can fit inside a thread block 

• To increase parallelism, we need to coordinate work among thread blocks. 

• This is achieved by mapping element of data vector to threads using global index  = threadIdx.x + blockIdx.x*blockDim.x



4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

0 1

4 4

Code must check that the dataIndex 
calculated by threadIdx.x + 

blockIdx.x * blockDim.x is less 
than N, the number of data elements.

Grid size larger than data setGrid size larger than data set



Choose the optimal block size

• Write an execution configuration that creates more threads than 
necessary  

• Pass a value as an argument into the kernel (N) that represents that 
total size if the data set to be processed/total threads needed to 
complete the work 

• Calculate the global index and if it does not exceed N perform the 
kernel work 

Know your limitations 

Maximum size at each level of the thread hierarchy is device dependent. 
On A100 typical you get :  
• Maximum number of threads per block : 1024 
• Maximum sizes of x-, y-, and -z dimensions of threads block 1024 x 

1024 x 64  
•  Maximum sizes of each dimension of grid of thread blocks: 65535 x 

65535 x 65535 (about 280,000 billion blocks)

// Coalesced access example

__global__ vectorSum(int N) 

int idx = threadIdx.x + blockIdx.x * blockDim.x;

{

  if(idx < N){ // only do work if it does}

} 
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Timing with CPU Timer
A CPU timer can be created by using the gettimeofday system call to get the system’s wall-clock 
time, which returns the number of seconds since the epoch. You need to include the sys/time.h 
header ! le, as shown in Listing 2-5.

double cpuSecond() {
   struct timeval tp;
   gettimeofday(&tp,NULL);
   return ((double)tp.tv_sec + (double)tp.tv_usec*1.e-6);
}

You can measure your kernel with cpuSecond in the following way:

double iStart = cpuSecond();
kernel_name<<<grid, block>>>(argument list);
cudaDeviceSynchronize();
double iElaps = cpuSecond() - iStart;

Because a kernel call is asynchronous with respect to the host, you need to use 
cudaDeviceSynchronize to wait for all GPU threads to complete. The variable iElaps reports the 
time spent as if you had measured kernel execution with your wristwatch (in seconds).

Now test a big vector with 16M elements by setting the size of the data set as follows:

int nElem = 1<<24;

You need to modify the kernel for GPU scalability by calculating a row-major array index i using 
the block and thread indices, and by adding a test (i < N) that checks for those indices that may 
exceed array bounds, as follows:

__global__ void sumArraysOnGPU(float *A, float *B, float *C, const int N) {
   int i = blockIdx.x * blockDim.x + threadIdx.x;
   if (i < N) C[i] = A[i] + B[i];
}

With these changes, you are ready to measure the kernel using different execution con! gurations. To 
handle the case where the total number of threads created is larger than the total number of vector 
elements, you need to restrict your kernel from illegal global memory access, as shown in Figure 2-7.

Block 0 Block 1

A grid with 4 blocks

total vector elements < total threads

Block 2 Block 3

FIGURE 2-7

Listing 2-5 shows you how to measure the vector addition kernel with the CPU timer in the main 
function.

Choosing the optimal grid size



Every thread runs exactly the same program

Thread block

A limited number of threads (1024) can fit inside a thread block

To increase parallelism, we need to coordinate work among thread blocks

All about this one line code

This is achieved by mapping element of data vector to threads using global index

int index = threadIdx.x + (blockIdx.x * blockDim.x)

Thread block



Transparent scalability

Block 6 Block 7

Block 4 Block 5

Block 2 Block 3

Device

Block 0 Block 1

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6

Each block can execute 
in any order relative to 

other blocks

Block 7

T
im

e

GPU with 2 SM

GPU with 4 SM

User workload of 8 Blocks



Mapping to hardware

Execute concurrently2

Each SM runs multiple thread blocks 

Each SP runs on thread from a thread blocks

CUDA invokes kernel grid1

Host kicks off the execution of a kernel grid which 
contains blocks of threads

Grid blocks distributed to SMs3

Shared cache, register and memory  

Global memory shared by all SMs
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A MAGIC NUMBER: 32

The number 32 is a magic number in CUDA programming. It comes from hard-
ware, and has a signi! cant impact on the performance of software.

Conceptually, you can think of it as the granularity of work processed simultane-
ously in SIMD fashion by an SM. Optimizing your workloads to ! t within the 
boundaries of a warp (group of 32 threads) will generally lead to more ef! cient 
utilization of GPU compute resources. You will learn much more about this issue in 
subsequent chapters.

A thread block is scheduled on only one SM. Once a thread block is scheduled on an SM, it remains 
there until execution completes. An SM can hold more than one thread block at the same time. 
Figure 3-2 illustrates the corresponding components from the logical view and hardware view of 
CUDA programming.

Software

Thread

Thread Block

Grid

Hardware

CUDA Core

SM

Device

FIGURE 3-2

Shared memory and registers are precious resources in an SM. Shared memory is partitioned 
among thread blocks resident on the SM and registers are partitioned among threads. Threads 
in a thread block can cooperate and communicate with each other through these resources. 
While all threads in a thread block run logically in parallel, not all threads can execute 
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A MAGIC NUMBER: 32

The number 32 is a magic number in CUDA programming. It comes from hard-
ware, and has a signi! cant impact on the performance of software.

Conceptually, you can think of it as the granularity of work processed simultane-
ously in SIMD fashion by an SM. Optimizing your workloads to ! t within the 
boundaries of a warp (group of 32 threads) will generally lead to more ef! cient 
utilization of GPU compute resources. You will learn much more about this issue in 
subsequent chapters.

A thread block is scheduled on only one SM. Once a thread block is scheduled on an SM, it remains 
there until execution completes. An SM can hold more than one thread block at the same time. 
Figure 3-2 illustrates the corresponding components from the logical view and hardware view of 
CUDA programming.

Software

Thread

Thread Block

Grid

Hardware

CUDA Core

SM

Device

FIGURE 3-2

Shared memory and registers are precious resources in an SM. Shared memory is partitioned 
among thread blocks resident on the SM and registers are partitioned among threads. Threads 
in a thread block can cooperate and communicate with each other through these resources. 
While all threads in a thread block run logically in parallel, not all threads can execute 



CUDA enhances your control over memory and thread hierarchies, optimizing execution and scheduling with:

Thread hierarchy structure Memory hierarchy structure 

Compiling and running CUDA enable application



Three simple processing steps
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SIMPLE PROCESSING FLOW

1. Copy input data from CPU memory to GPU 
memory

PCIe or NVLink Bus

Three simple processing steps

1 Copy input data from CPU memory to GPU
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SIMPLE PROCESSING FLOW

PCIe or NVLink Bus

1. Copy input data from CPU memory to GPU 
memory

2. Load GPU program and execute,
caching data on chip for performance

3. Copy results from GPU memory to CPU 
memory

Three simple processing steps

Copy input data from CPU memory to GPU

Three simple processing steps

1

2 Load GPU program and execute caching data on 
chip for performance

3 Copy results From GPU to CPU memory 



Copy host to Device 

Data movement

1

2 Copy Device to host 

3 Clean up memory for host and device

// Copy data from host to device 

checkCuda( cudaMemcpy(d_A, h_A, size, 
cudaMemcpyHostToDevice) ); 
checkCuda( cudaMemcpy(d_B, h_B, size, 
cudaMemcpyHostToDevice) );  

// Copy result from device to host 

checkCuda( cudaMemcpy(h_C_ref, d_C, size, 
cudaMemcpyDeviceToHost) ); 

// Clean up memory 

   checkCuda( cudaFree(d_A) ); 
checkCuda( cudaFree(d_B) ); 
checkCuda( cudaFree(d_C) ); 
cleanup(h_A, h_B, h_C, h_C_ref);



How to compile CUDA enable application?1



NVHPC Compiler: translate CUDA into optimised machine 
instructions for NVIDIA GPUs 

Libraries:  Comprehensive libraries like cuBLAS and cuDNN 
are provided 

Debugging tools:  robust debugging tools
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CUDA Libraries

CUDA Compiler

CPU Host Code

C Compiler

CPU

CUDA Assembly
for Computing (PTX)

CUDA Driver
& Runtime

Debugger
Profiler

GPU

Integrated CPU+GPU Code

FIGURE 1-14

The CUDA nvcc compiler is based on the widely used LLVM open source compiler infrastructure. 
You can create or extend programming languages with support for GPU acceleration using the 
CUDA Compiler SDK, as shown in Figure 1-15.

CUDA
C, C++, Fortran

New Language
Support

LLVM Compiler
For CUDA

NVIDIA
GPUs

New Processor
Support

×86
CPUs

FIGURE 1-15

The CUDA platform is also a foundation that supports a diverse parallel computing ecosystem, as 
shown in Figure 1-16. Today, the CUDA ecosystem is growing rapidly as more and more companies 
provide world-class tools, services, and solutions. If you want to build your applications on GPUs, 
the easiest way to harness the performance of GPUs is with the CUDA Toolkit (https://
developer.nvidia.com/cuda-toolkit), which provides a comprehensive development environ-
ment for C and C++ developers. The CUDA Toolkit includes a compiler, math libraries, and tools 
for debugging and optimizing the performance of your applications. You will also fi nd code samples, 
programming guides, user manuals, API references, and other documentation to help you get started.

CUDA components

CUDA Driver1

A critical piece of software that acts as the interface 
between your application and the NVIDIA GPU 
hardware

The CUDA Toolkit2
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CUDA components

Compilation process1

Code for host and device in some.cu file 

CUDA compiler separates source code into host and 
device components 

Based LLVM open source compiler infrastructure

nvcc -arch=sm_70 -o out some-CUDA.cu -run2

- arch: indicates for which architecture the files must 
be compiled (sm_80 is for TESLA A100 GPU) 

- run: execute the successfully compiled binary 

- Information on CUDA device: nvidia-smi, deviceQuery 

NVIDIA C compiler (NVCC)

Heterogeneous computing platform

Host C-preprocessor 
compilers linker

Device JIT compiler

CUDA C program



Measuring performance and Error handling2



// Validate results

bool validateResults(float *hostRef, float *gpuRef, int nElem) {

bool correct = true;

for (int i = 0; i < nElem; i++) {

if (fabs(hostRef[i] - gpuRef[i]) > 1e-5) {

correct = false;

printf("Mismatch at index %d: CPU = %f, GPU = %f\n", i, hostRef[i], gpuRef[I]);

break;

}

}

if (correct) {

printf("Results match!\n”);

}

return correct;

}

Validate GPU results by comparing with CPU results



Kernel Launch Errors

• Error handling in accelerated CUDA code is essential. 
• All CUDA API returns an error code of type cudaError_t 
‣ Special value cudaSuccess means that no error occurred  

• An error message can be printed with cudaGetErrorString

cudaError_t err; 
err = cudaMallocManaged(&a, N); 
if(err != cudaSuccess) { printf(“Error: %s \n”, cudaGetErrorString(err)); }

• To check for errors occurring at the time of kernel launch, CUDA provides the cudaGetLastError function, which does 
return a value of type cudaError_t

someKernel <<<1, -1 >>>();           // - 1 is not a valid number of threads 
cudaError_t err; 
err = cudaGetLastError(); 
if(err != cudaSuccess) { printf(“Error: %s \n”, cudaGetErrorString(err));}

Kernel Launch Errors



CUDA Error Handling Function

• A macro that wraps CUDA function calls for checking errors could be useful  
• Can be wrapped around any function that returns a cudaError_t

#include <stdio.h> 
#include <assert.h> 
 

inline cudaError_t checkCuda(cudaError_t result) {
   if (result != cudaSuccess) { 
        fprintf(stderr, "CUDA Runtime Error: %s\n", cudaGetErrorString(result)); 
        assert(result == cudaSuccess); } 
   return result; } 

int main() { 
/*  The macro can be wrapped around any function returning 
* a value of type `cudaError_t`. 
*/ 
checkCuda( cudaDeviceSynchronize() ) 
}

CUDA Error Handling Function



Asynchronous errors 

To catch errors that occur in asynchronous part of the code (for example during the execution of an asynchronous 
kernel), check the status returned by a subsequent synchronizing CUDA runtime API call, such as 
cudaDeviceSynchronize. 

cudaError_t asynchErr; 
asynchErr = cudaDeviceSynchronize(); if (asynchErr != cudaSuccess)
{ 

           printf("Error: %s\n", cudaGetErrorString(err)); 
      } 

Asynchronous errors



double cpuSecond() { 
    struct timespec ts; 
    timespec_get(&ts, TIME_UTC); 
    return ((double)ts.tv_sec + (double)ts.tv_nsec * 1.e-9); 
}  

/* Measure time for CPU execution */ 
double start = cpuSecond(); 
sumArraysOnCPU(h_A, h_B, hostRef, nElem); 
double cpuTime = cpuSecond() - start; 
printf("CPU Execution Time: %f seconds\n", cpuTime);  

/* Measure time for GPU execution 
double start = cpuSecond(); 
sumArraysOnGPU<<<gridSize, blockSize>>>(d_A, d_B, d_C, nElem); 
checkCuda( cudaDeviceSynchronize() );  // Ensure GPU kernel finishes 
double gpuTime = cpuSecond() - start; 
printf("GPU Execution Time: %f seconds\n", gpuTime);

48 ❘ CHAPTER 2  CUDA PROGRAMMING MODEL
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==17770== Profiling application: ./sumArraysOnGPU-timer
==17770== Profiling result:
Time(%)      Time     Calls       Avg       Min       Max  Name
 70.35%  52.667ms         3  17.556ms  17.415ms  17.800ms  [CUDA memcpy HtoD]
 25.77%  19.291ms         1  19.291ms  19.291ms  19.291ms  [CUDA memcpy DtoH]
  3.88%  2.9024ms         1  2.9024ms  2.9024ms  2.9024ms  sumArraysOnGPU
(float*, float*, int) 

The ! rst half of the message contains output from the program, and the second half contains out-
put from nvprof. Note that the CPU timer reported the elapsed kernel time as 3.26 milliseconds, 
and nvprof reported the elapsed kernel time as 2.90 milliseconds. For this case, the nvprof result 
is more accurate than the host-side timing result, because the time measured with the CPU timer 
included overhead from nvprof.

nvprof is a powerful tool to help you understand where time is being spent in your application. 
Notice that in this example, data transfer between the host and device takes more time than the 
kernel execution. A timeline view, as depicted in Figure 2-8 (not drawn to scale), shows time spent 
in CPU, time spent in data transfer, and time spent computing on the GPU.

CPU

GPU

time

2.9 ms

17.8 ms 19.3 mscudaMemcpy

FIGURE 2-8

For HPC workloads, it is important to understand the compute to communication ratio in a 
program. If your application spends more time computing than transferring data, then it may be 
possible to overlap these operations and completely hide the latency associated with transferring 
data. If your application spends less time computing than transferring data, it is important to 
minimize the transfer between the host and device. In Chapter 6, you will learn how to overlap 
computation with communication using CUDA streams and events.

COMPARING APP PERFORMANCE TO MAXIMIZE THEORETICAL LIMITS

While performing application optimization, it is important to determine how your 
application compares to theoretical limits. Counters collected from nvprof can 
help you derive instruction and memory throughput for your application. If you 
compare application measured values to theoretical peak values, you can determine 
if your application is limited by arithmetic or by memory bandwidth. Theoretical 
ratios can be derived as follows using Tesla K10 as an example:

 ➤ Tesla K10 Peak Single Precision FLOPS:

745 MHz core clock * 2 GPUs/board * (8 multiprocessors * 192 fp32 cores/
multiprocessor) * 2 ops/cycle = 4.58 TFLOPS

Timing your kernel 



Measuring performance with events

An event in CUDA is essentially a GPU time stamp that is recorded at a user-specified point in time. The API calls that 
create and destroy events, record events and convert timestamp difference into a floating-point value in milliseconds 

cudaEvent_t start, stop; 
float time;  
cudaEventCreate(&start);  
cudaEventRecord(&stop);  
cudaEventRecord( start, 0 );  
kernel<<<grid, threads>>> ( d_odata, d_idata, size_x, size_y, NUM_REPS);  

// do some work on the GPU 
cudaEventRecord( stop, 0 );   
cudaEventSynchronize( stop );  

cudaEventElapsedTime( &time, start, stop ); 
cudaEventDestroy( start ); 
cudaEventDestroy( stop );

How to time code using CUDA events

Measuring performance with events



Time your kernels

N Elapsed Time on Host Kernel Configuration Elapsed Time on Device Speed up [Second]

1 <<20 0.000757 (4096, 256) 0.000206 3.67

1 << 24 0.00013451 (4096, 256) 0.000447 30.12

1 << 26 0.052383 (524288, 128) 0.001013 51.72

1 << 29 0.424363 (524288, 128) 0.008173 51.92



Are there hardware constraints on threads per block and blocks per grid?3



When the data set is larger than grid size?
• In this scenario, each thread 

should work on more elements.

• Work can be assigned 
programmatically with a grid-
stride loop.

Data set larger than grid size: grid-stride loop
• In this scenario, each threads 

should work on more elements.

• Work can be assigned 
programmatically with a grid-
stride loop:
• the first element to be assigned 

to a thread is calculated via 
the global index,

• the next one is obtained by 
summing the number of 
threads in the grid

stride = blockDim.x * gridDim.x

                       

        

 

 

 

 

 

 

 

 

 

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Data set larger than grid size: grid-stride loop
• In this scenario, each threads 

should work on more elements.

• Work can be assigned 
programmatically with a grid-
stride loop:
• the first element to be assigned 

to a thread is calculated via 
the global index,

• the next one is obtained by 
summing the number of 
threads in the grid

stride = blockDim.x * gridDim.x

                       

        

 

 

 

 

 

 

 

 

 

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Data set larger than grid size: grid-stride loop

Advantages of Grid-stride loops

• Scalability: handles any size of input data regardless of hardware 
contains. It ensures all the data is processed  

• Efficient resource utilisations: It allows the kernels to utilise all 
available threads efficiently by feeding more jobs  

• Simplicity: straight forward implementation, without needing any 
complex logic to manage the devision of the work

// Coalesced access example

__global__ vectorSum(int N) 

int idx = threadIdx.x + blockIdx.x * blockDim.x;

int gridStride = gridDim.x * blockDim.x;

{

  if(idx < N){ // only do work if it does}

} 



Ways to improve your code 

Types of Data transfer

Pageable and Pinned memory
Unified memory and Asynchronous Prefetching 

Global memory reads/writes

Aligned and coalesced memory accesses that reduce wasted 
bandwidth 
Array of Structure versus Structure of Array
Overlapping Kernel and Data movement by using non-default  
streams

Performance tuning

Parallelising higher dimensions-2D
Unrolling techniques
Matrix Transpose Problem
Shared memory
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CPU-GPU

Coalesing

Cache Effi

Data transfer impacts on performance



Important to minimise the transfer between the host and device

Measuring performance with events
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Roofline Model

• Key Concept: Computational Intensity: 

◦ Defined as FLOP (floating-point operations) per byte of 
memory transferred 

• Latency Hiding: 

◦ Utilizing multiple warps on a Streaming Multiprocessor 
(SM) enables concurrent computation. 

◦ While some warps wait for memory transfers, others can 
continue executing 

• Combined Performance: 

◦ The model illustrates how computation and memory 
transfer can overlap, represented as: 
▪ Performance = max(compute, memory transfer)



PCI Expreses

8 GB/sec

Host Compute 
~670 GFLOPs (Ivy Bridge EX)

Host Memory 
32 GB DDR3

42 GB/sec

GPU Compute 
~ 4 TFLOPS ( NVIDIA Tesla K40)

GPU memory 
12 GB GDDR5

288 GB/sec

Impact of data transfer on overall application performance

GPU vs. CPU: Understanding Performance Trade-offs



1
Registers

Fastest, smallest memory

2
L1 Cache

Fast, small, on-chip

3
Shared Memory

Medium speed, shared among threads

4
Global Memory

Slowest, largest, off-chip

Understanding CUDA Memory Hierarchy
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lifetime of the thread block. All threads can access global memory. There are also two read-only 
memory spaces accessible by all threads: the constant and texture memory spaces. The global, con-
stant, and texture memory spaces are optimized for different uses. Texture memory offers different 
address modes and fi ltering for various data layouts. The contents of global, constant, and texture 
memory have the same lifetime as an application.

(Device) Grid

Block (0, 0)

Shared Memory

Registers

Thread (0, 0)

Local
Memory

Local
Memory

Local
Memory

Global
Memory

Constant
Memory

Texture
Memory

Host

Thread (1, 0) Thread (2, 0)

Registers Registers

FIGURE 4-2

Registers
Registers are the fastest memory space on a GPU. An automatic variable declared in a kernel with-
out any other type qualifi ers is generally stored in a register. Arrays declared in a kernel may also be 
stored in registers, but only if the indices used to reference the array are constant and can be deter-
mined at compile time.

Register variables are private to each thread. A kernel typically uses registers to hold frequently 
accessed thread-private variables. Register variables share their lifetime with the kernel. Once a ker-
nel completes execution, a register variable cannot be accessed again.

Registers are scarce resources that are partitioned among active warps in an SM. On Fermi GPUs, 
there is a hardware limit of 63 registers per thread. Kepler expands this limit to 255 registers per 

Device code can

- R/W per-thread registers 

- R/W per-thread Local Memory 

- R/W per-block Shared Memory 

- R/W per-grid global Memory 

- Read only per-grid Constant Memory  

- Read only per-grid Texture Memory 

Host code can

- Transfer data to/from per-grid global and constant memories

GPU memory breakdown
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must be a multiple of 32 bytes, 64 bytes, or 128 bytes. Optimizing memory transactions are vital to 
obtaining optimal performance. When a warp performs a memory load/store, the number of trans-
actions required to satisfy that request typically depends on the following two factors:

 ➤ Distribution of memory addresses across the threads of that warp.
 ➤ Alignment of memory addresses per transaction.

In general, the more transactions necessary to satisfy a memory request, the higher the potential for 
unused bytes to be transferred, causing a reduction in throughput effi ciency.

For a given warp memory request, the number of transactions and the throughput effi ciency are 
determined by the compute capability of the device. For devices of compute capability 1.0 and 1.1, 
the requirements on global memory access are very strict. For devices with compute capabilities 
beyond 1.1, the requirements are more relaxed because memory transactions are cached. Cached 
memory transactions exploit data locality to improve throughput effi ciency. 

The following sections will examine how to optimize global memory accesses and how to maximize 
global memory throughput effi ciency.

GPU Caches
Like CPU caches, GPU caches are non-programmable memory. There are four types of cache in 
GPU devices:

 ➤ L1
 ➤ L2
 ➤ Read-only constant
 ➤ Read-only texture

There is one L1 cache per-SM and one L2 cache shared by all SMs. Both L1 and L2 caches are used to 
store data in local and global memory, including register spills. On Fermi GPus and Kepler K40 or later 
GPUs, CUDA allows you to confi gure whether reads are cached in both L1 and L2, or only in L2.

On the CPU, both memory loads and stores can be cached. However, on the GPU only memory load 
operations can be cached; memory store operations cannot be cached.

Each SM also has a read-only constant cache and read-only texture cache that are used to improve 
read performance from their respective memory spaces in device memory.

CUDA Variable Declaration Summary
Table 4-1 summarizes CUDA variable declarations and their corresponding memory location, scope, 
lifespan, and qualifi er.

TABLE 4-1: CUDA Variable and Type Qualifi er

QUALIFIER VARIABLE NAME MEMORY SCOPE LIFESPAN

float var Register Thread Thread

float 
var[100]

Local Thread Thread

Introducing the CUDA Memory Model ❘ 143
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QUALIFIER VARIABLE NAME MEMORY SCOPE LIFESPAN

__shared__ float var † Shared Block Block

__device__ float var † Global Global Application

__constant__ float var † Constant Global Application

† Can be either scalar variable or array variable

The principal traits of the various memory types are summarized in Table 4-2.

TABLE 4-2: Salient Features of Device Memory

MEMORY ON/OFF CHIP CACHED ACCESS SCOPE LIFETIME

Register On n/a R/W 1 thread Thread

Local Off † R/W 1 thread Thread

Shared On n/a R/W All threads in block Block

Global Off † R/W All threads + host Host allocation

Constant Off Yes R All threads + host Host allocation

Texture Off Yes R All threads + host Host allocation

† Cached only on devices of compute capability 2.x

Static Global Memory
The following code illustrates how to statically declare a global variable. As shown in Listing 4-1, a 
global variable of type float is declared with fi le scope. In the kernel function checkGlobal-Vari-
able, the value of that global variable is printed and then its value is changed. In function main, the 
value of that global variable is initialized using the function cudaMemcpyToSymbol. After check-
GlobalVariable is executed, the value of the global variable is altered. Its new value is then copied 
back to the host using cudaMemcpyFromSymbol.

LISTING 4-1: Static declared global variable (globalVariable.cu)

#include <cuda_runtime.h>
#include <stdio.h>

__device__ float devData;

__global__ void checkGlobalVariable() {
   // display the original value
   printf("Device: the value of the global variable is %f\n",devData);

continues

CUDA Variable Declaration Summary



1. Memory allocation
Process of reserving memory space for a variable or data structure Memory
allocation can be performed using different memory types, such as global, shared and constant 
memory

CUDA memory management 

Process of copying data from one memory location to another
Memory copy can be performed using different memory types, such as host 
memory and device memory

Process of coordinating the access of multiple threads to shared 
memory or global memory 
Synchronization primitives: atomic operations, barriers, and locks

2. Memory transfer 

3. Memory synchronization 



Pageable data transfer is default method

Pageable 
Memory

Pined 
Memory

Host

DRAM

Device

Pageable Data Transfer 

Data transfer between host and device

• Allocated host memory is pageable  

• GPU cannot safely access data in pageable 

host memory 

• When transferring data between the host and 

device, the CUDA driver first copies data from 

pageable host memory to a page locked or 

pinned memory buffer before sending it to the 

device 

• Pageable memory in CUDA is used for memory 

allocation when data transfers between the 

CPU and GPU are infrequent



• cudaMemcpy ( void* dst, void *src, size_t nbytes, cudaMemcpyKind kind ) 

‣ Direction specifies locations (host or device) of src and dst 

‣ Blocks CPU thread ( returns after the copy is complete ) 

‣ Does not start copy until previous CUDA calls complete 

• Kind: specifies the direction of the memory copy  

‣ cudaMemcpyHostToHost 

‣ cudaMemcpyHostToDevice 

‣ cudaMemcpyDeviceToHost

• CudaFree( devPtr ) 

‣ Free memory from device Global memory 

‣ Pointer to free object

Data memory allocation/release

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html#group__CUDART__TYPES_1g18fa99055ee694244a270e4d5101e95b
http://horacio9573.no-ip.org/cuda/group__CUDART__TYPES_g18fa99055ee694244a270e4d5101e95b.html#gg18fa99055ee694244a270e4d5101e95bdeec295de8a74ac2a74f98ffb6c5d7c7
http://horacio9573.no-ip.org/cuda/group__CUDART__TYPES_g18fa99055ee694244a270e4d5101e95b.html#gg18fa99055ee694244a270e4d5101e95b1a03d03a676ea8ec51b9b1e193617568
http://horacio9573.no-ip.org/cuda/group__CUDART__TYPES_g18fa99055ee694244a270e4d5101e95b.html#gg18fa99055ee694244a270e4d5101e95b5653197602d3455a530db5a7edb1a253


Refers to the coordination of threads accessing global memory or shared memory

• Device synchronization 

‣ In CUDA, the CPU and the GPU operate asynchronously 

‣ Synchronization is necessary to ensure that the GPU has finished executing before continuing with the CPU code

cudaMemcpy(d_data, h_data, size * sizeof(float), cudaMemcpyHostToDevice); 
cudaMemcpyAsync(h_result, d_result, size *  sizeof(float), cudaMemcpyDeviceToHost); 
cudaDeviceSynchronize();

• Thread synchronization 

‣ Threads within a block can access shared memory, which is a memory space shared among all threads in a block  

‣ Ensure that threads accessing shared memory do not interfere with each other

__syncthreads(); 
// compute using shared memory

Data memory allocation/release



Pageable 
Memory

Pined 
Memory

Host

DRAM

Device

Pageable Data Transfer 

Data transfer between host and device

Pined 
Memory

DRAM

Device

Host

Pinned Data Transfer Pinned data transfer is pinned or locked

• Memory cannot be moved by the operating 

system 

• Pinned memory is memory that is locked in 

physical memory and is accessible to both 

the CPU and the GPU 

• Allocation and deallocation is expensive than 

pageable memory 

• Provides higher transfer throughput for large 

data transfers 



Pageable and pinned memory transfer

Pageable Data Transfer 

// allocate and initialize 
int *h_a, *d_a;  // host and device specific arrays 
h_a = (float*)malloc(nbytes); 
cudaMalloc( &d_a, nbytes);  

// memcpy H->D 
cudaMemcpy( d_a, h_a, nbytes, cudaMemcpyHostToDevice); 

// kernel compute  
kernelGPU<<<>>>(…, d_a, …); 

//cudaMemcpy D->H 
cudaMemcpy( h_a, d_a, nbytes, cudaMemcpyDeviceToHost); 
verifyOnHost(host_a, N);  

//Free host and device memory 
cudaFree(device_a); Free(host_a)

Pinned Data Transfer 

// allocate and initialize 

cudaMallocHost(nbytes); 
cudaMalloc( &d_a, nbytes);  

// memcpy H->D  

cudaMemcpy( d_a, h_a, nbytes, cudaMemcpyHostToDevice); 

// kernel compute  

kernelGPU<<<>>>(…, d_a, …); 

//cudaMemcpy  D->H 

cudaMemcpy( h_a, d_a, nbytes, cudaMemcpyDeviceToHost); 
verifyOnHost(host_a, N);  

//Free host and device memory 

cudaFree(device_a); cudaFreeHost(host_a)



Vector sum pageable memory transfer

/* Define block and grid sizes */ 
    int blockSize = 256; 
    int gridSize = (nElem + blockSize - 1) / blockSize; 

/* Measure time for GPU execution */ 
    start = cpuSecond(); 
    sumArraysOnGPU<<<gridSize, blockSize>>>(d_A, d_B, d_C, nElem); 
    checkCuda( cudaDeviceSynchronize() );  // Ensure GPU kernel finishes 
    double gpuTime = cpuSecond() - start; 
    printf("GPU Execution Time: %f seconds\n", gpuTime); 

/* Copy result from device to host */  
   checkCuda( cudaMemcpy(gpuRef, d_C, size, cudaMemcpyDeviceToHost) );

/* Host memory allocation */ 

float *h_A, *h_B, *hostRef, *gpuRef; 
h_A = (float*)malloc(size); 
h_B = (float*)malloc(size);   
hostRef = (float*)malloc(size);       // Result from CPU 
gpuRef = (float *)malloc(size);     // Result from GPU 

/* malloc device global memory */ 

*float *d_A, *d_B, *d_C; 
checkCuda( cudaMalloc(&d_A, size) ); 
checkCuda( cudaMalloc(&d_B, size) ); 
checkCuda( cudaMalloc(&d_C, size) ); 

/* Copy data from host to device*/ 

lcudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice); 
cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

Pageable Data Transfer 



Pinned Data Transfer 

Vector sum pinned memory transfer

/* malloc device global memory */ 

float *h_A, *h_B, *hostRef, *gpuRef; 
cudaMallocHost((void**)&h_A, size);   // Use cudaMallocHost for pinned memory 
cudaMallocHost((void**)&h_B, size);   // Use cudaMallocHost for pinned memory 
cudaMallocHost((void**)&hostRef, size); // Result from CPU 
cudaMallocHost((void**)&gpuRef, size);   // Result from GPU 

/* Copy data from host to device */ 
    checkCuda( cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice) ); 
    checkCuda( cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice) ); 

/* malloc device global memory */ 

    float *d_A, *d_B, *d_C; 
    checkCuda( cudaMalloc(&d_A, size) ); 
    checkCuda( cudaMalloc(&d_B, size) ); 
    checkCuda( cudaMalloc(&d_C, size) ); 

/* Copy data from host to device */ 
    checkCuda( cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice) ); 
    checkCuda( cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice) );

/* Define block and grid sizes */ 
    int blockSize = 256; 
    int gridSize = (nElem + blockSize - 1) / blockSize; 

/* Measure time for GPU execution */ 
    start = cpuSecond(); 
    sumArraysOnGPU<<<gridSize, blockSize>>>(d_A, d_B, d_C, nElem); 
    checkCuda( cudaDeviceSynchronize() );  // Ensure GPU kernel finishes 
    double gpuTime = cpuSecond() - start; 
    printf("GPU Execution Time: %f seconds\n", gpuTime); 

/* Copy result from device to host */  
   checkCuda( cudaMemcpy(gpuRef, d_C, size, cudaMemcpyDeviceToHost) );



Vector sum pageable and pinned memory transfer

N Pageable mem transfer Pinned mem transfer SlowDown

1 << 20 0.000500 0.00036 0.72

1 << 22 0.000486 0.000225 0.462962962962963

1 << 24 0.001842 0.002379 1.29153094462541

1 << 26 0.003168 0.001021 0.322285353535354

1 << 28 0.004015 0.007195 1.7920298879203

1 << 30 0.029974 0.019884 0.663374924934944



Zero-copy memory

GPU threads can directly access zero-copy memory1

• Leveraging host memory when there is insufficient device memory  

• Avoiding explicit data transfer between the host and device  

• Improving PCIe transfer rates 

• When using zero-copy memory to share data between the host and device, you must synchronise memory access across the host and device

Host cannot access device variables and device cannot access host variables directly, one exception rule to this : zero copy memory

CUDA API call2

• cudaHostAlloc(void **ptr, size_t size, unsigned int flags);   

• flags = cudaHostAllocMapped, cudaHostAllocDefault, cudaHostAllocPortable  

• Most relevant flag to zero-copy memory is cudaHostAllocMapped, which returns host memory that is mapped into the device address space



Zero Data Transfer 

Vector sum Zero copy transfer

/* Allocate and initialize host memory for zero-copy*/ 

cudaHostAlloc((void**)&h_A, size, cudaHostAllocMapped); 
cudaHostAlloc((void**)&h_B, size, cudaHostAllocMapped); 
cudaHostAlloc((void**)&h_C, size, cudaHostAllocMapped); 

/* Get device pointers for zero-copy memory*/ 
    cudaHostGetDevicePointer(&d_A, h_A, 0); 
    cudaHostGetDevicePointer(&d_B, h_B, 0); 
    cudaHostGetDevicePointer(&d_C, h_C, 0); 

/* malloc device global memory */ 

    float *d_A, *d_B, *d_C; 
    checkCuda( cudaMalloc(&d_A, size) ); 
    checkCuda( cudaMalloc(&d_B, size) ); 
    checkCuda( cudaMalloc(&d_C, size) ); 

/* Copy data from host to device */ 
    checkCuda( cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice) ); 
    checkCuda( cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice) );

/* Define block and grid sizes */ 
    int blockSize = 256; 
    int gridSize = (nElem + blockSize - 1) / blockSize; 

/* Measure time for GPU execution */ 
    start = cpuSecond(); 
    sumArraysOnGPU<<<gridSize, blockSize>>>(d_A, d_B, d_C, nElem); 
    checkCuda( cudaDeviceSynchronize() );  // Ensure GPU kernel finishes 
    double gpuTime = cpuSecond() - start; 
    printf("GPU Execution Time: %f seconds\n", gpuTime); 

/* Copy result from device to host */  
   checkCuda( cudaMemcpy(gpuRef, d_C, size, cudaMemcpyDeviceToHost) );



SIZE Device memory 
 (ELAPSED TIME [s])

Zero-copy Memory  
(ELAPSED TIME [s])

SlowDown

1 KB 0.000033 0.000014 0.424242424242424

4 KB 0.007286 0.002334 0.320340378808674

16 KB 0.007289 0.002335 0.320345726437097

64 KB 0.001673 0.002342 1.39988045427376

256 kB 0.002434 0.002358 0.968775677896467

1 MB 0.002446 0.002524 1.03188879803761

4 MB 0.000849 0.000454 0.534746760895171

16 MB 0.004292 0.004123 0.960624417520969

64 MB 0.012136 0.007024 0.578773895847067

256 MB 0.051559 0.029347 0.569192575496034

Comparison of Zero-copy Memory vs Device Memory 



GPU MemoryHost Memory PCI ExpresesUnified memory

Unified virtual memory (UVM)

Developer view of GPU memoryIncreased memory latency

• Single allocation, single pointer, accessible everywhere 
eliminate the need of explicit copy and simplify code porting

• Enables the sharing of memory which reduces overall usage

Limited control over memory placement

UVM automatically manages memory placement, which 
may not always be optimal for a given application
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int N = 10000;  
size_t size = N*sizeof(int); 

int *a;  
a = (int*)malloc(size); 

free(a);

int N = 10000;  
size_t size = N*sizeof(int); 

int *a;  
cudaMallocManaged(&a, size); 

cudaFree(a);

CPU code CUDA Code with UM

Allow to allocate and free memory 

Simplified memory management code 



Vector sum Unified memory transfer

Unified  memory Transfer 

/* Unified Memory allocation */ 
float *a, *b, *hostRef, *gpuRef; 
checkCuda(cudaMallocManaged(&a, size)); 
checkCuda(cudaMallocManaged(&b, size)); 
checkCuda(cudaMallocManaged(&hostRef, size)); 
checkCuda(cudaMallocManaged(&gpuRef, size));

/* Define block and grid sizes */ 
int blockSize = 256; 
int gridSize = (nElem + blockSize - 1) / blockSize; 

/* Measure time for GPU execution */ 
     start = cpuSecond(); 
     sumArraysOnGPU<<<gridSize, blockSize>>>(d_A, d_B, d_C, nElem); 

checkCuda( cudaDeviceSynchronize() );  
double gpuTime = cpuSecond() - start; 
printf("GPU Execution Time: %f seconds\n", gpuTime); 

/* Copy result from device to host */  
checkCuda( cudaMemcpy(gpuRef, d_C, size,     
cudaMemcpyDeviceToHost) );



Performance consideration4



Best Practices for porting a code

Identify Hot Spots

Analyze your application's memory access patterns and identify the critical data that 
should be prefetched

Time Prefetching

Carefully time the prefetch operations to overlap with kernel execution and minimize 
latency

Monitor Performance

Use profiling tools to measure the impact and fine-tune its usage: profiler the code with 
Nsight-system + NVTX, Nsight compute

Understand the application 

Mini app, Understand if the kernel is memory or compute bound 



It’s all about memory access patternsIT’S ALL ABOUT MEMORY ACCESS PATTERNS

Depending on how you access memory 
bandwidth can very greatly!

111 GB/sec

1418 GB/sec

HBM page size = 1kB
Burst size = 64 Bytes

724 GB/sec

#pragma acc parallel loop collapse(2)
  for (int i=0;i<n;++i)
    for (int j=0;j<n;++j)
      y[i*n+j] += x[j*n+i];

Depending on how you access memory bandwidth 
can very greatly!



Memory access patterns

M00 M10 M20 M30

M10 M11 M12 M13

M20 M21 M22 M23

M30 M31 M32 M33

Aligned direction 

in kernel code

M00 M10 M20 M30 M10 M11 M12 M13 M20 M21 M22 M23 M30 M31 M32 M33

T0 T1 T2 T3 T0 T1 T2 T3
. . . 

Loading iteration 1Loading iteration 0

• For blocks that consist of multiple dimensions of threads, 
the dimensions will be projected into a linear order before 
partitioning into warps  

• Each thread is shown as M(x,y), with x being the threadIdx.x 
and y being threadIdx.y for the thread 

• Cooperatively, the 32 threads in a warp present a single 
memory access request comprised of the requested 
addresses, which is serviced by one or more device memory 
transactions.



Memory access patterns
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Aligned direction 

in kernel code

M00 M10 M20 M30 M10 M11 M12 M13 M20 M21 M22 M23 M30 M31 M32 M33

Loading iteration 1

T0 T1 T2 T3

Loading iteration 0

T0 T1 T2 T3



Memory bandwidth limits GPU-enabled applications
Memory Access Patterns ❘ 159
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FIGURE 4-6

Aligned memory accesses occur when the ! rst address of a device memory transaction is an even 
multiple of the cache granularity being used to service the transaction (either 32 bytes for L2 cache 
or 128 bytes for L1 cache). Performing a misaligned load will cause wasted bandwidth.

Coalesced memory accesses occur when all 32 threads in a warp access a contiguous chunk of 
memory. 

Aligned coalesced memory accesses are ideal: A wrap accessing a contiguous chunk of memory 
starting at an aligned memory address. To maximize global memory throughput, it is important 
to organize memory operations to be both aligned and coalesced. Figure 4-7 illustrates an aligned 
and coalesced memory load operation. In this case, only a single 128-byte memory transaction is 
required to read the data from device memory. Figure 4-8 illustrates a misaligned and uncoalesced 
memory access. In this case, there may be as many as three 128-byte memory transactions to read 
the data from device memory: one starting at offset 0 to include the data being read below the con-
tiguous region, one at offset 256 to read the data being read above the contiguous region, and one 
at offset 128 that fetches the bulk of the data. Note that most of the bytes fetched by the lower and 
upper memory transactions will not be used, leading to wasted bandwidth.

0 31

128 160 192 224 256memory address

thread ID

FIGURE 4-7

In general, you should optimize for memory transaction ef! ciency: Use the least number of transac-
tions to service the maximum number of memory requests. How many transactions are needed, and 
how much throughput is delivered, varies with device compute capability.

• Memory operations are issued per warp, with each 
thread providing its own memory address

• Global memory loads/stores are staged through 
L2 and sometimes L1 caches

• Global memory accesses go through L2 cache, 
with optional L1 cache usage based on architecture

• Memory transactions use 128-byte or 32-byte 
segments, depending on cache involvement

• L1 cache lines are 128 bytes and map to 128-byte 
aligned segments in device memory

• Perfect mapping occurs when each thread in a 
warp requests one 4-byte value, matching the 128-
byte cache line size



Misaligned Memory AccessAligned Memory Access

Efficient memory access is crucial

accessed by threads are arranged such that each thread 

accesses data in consecutive memory locations 

L1 and L2 cache granularity: 32 bytes 128 byte

accessed by threads are not consecutive or not aligned to 

memory transaction boundaries

Memory Access Patterns ❘ 159
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Aligned memory accesses occur when the ! rst address of a device memory transaction is an even 
multiple of the cache granularity being used to service the transaction (either 32 bytes for L2 cache 
or 128 bytes for L1 cache). Performing a misaligned load will cause wasted bandwidth.

Coalesced memory accesses occur when all 32 threads in a warp access a contiguous chunk of 
memory. 

Aligned coalesced memory accesses are ideal: A wrap accessing a contiguous chunk of memory 
starting at an aligned memory address. To maximize global memory throughput, it is important 
to organize memory operations to be both aligned and coalesced. Figure 4-7 illustrates an aligned 
and coalesced memory load operation. In this case, only a single 128-byte memory transaction is 
required to read the data from device memory. Figure 4-8 illustrates a misaligned and uncoalesced 
memory access. In this case, there may be as many as three 128-byte memory transactions to read 
the data from device memory: one starting at offset 0 to include the data being read below the con-
tiguous region, one at offset 256 to read the data being read above the contiguous region, and one 
at offset 128 that fetches the bulk of the data. Note that most of the bytes fetched by the lower and 
upper memory transactions will not be used, leading to wasted bandwidth.
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In general, you should optimize for memory transaction ef! ciency: Use the least number of transac-
tions to service the maximum number of memory requests. How many transactions are needed, and 
how much throughput is delivered, varies with device compute capability.
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Global Memory Reads
In an SM, data is pipelined through one of the following three cache/buffer paths, depending on 
what type of device memory is being referenced:

 ➤ L1/L2 cache

 ➤ Constant cache

 ➤ Read-only cache

L1/L2 cache is the default path. To pass data through the other two paths requires explicit manage-
ment by the application, but can lead to performance improvement depending on the access patterns 
used. Whether global memory load operations pass through the L1 cache depends on two factors:

 ➤ Device compute capability

 ➤ Compiler options

On Fermi GPUs (compute capability 2.x) and Kepler K40 or later GPUs (compute capability 3.5 and 
up), L1 caching of global memory loads can be either enabled or disabled with compiler ! ags. By 
default, the L1 cache is enabled for global memory loads on Fermi devices and disabled on K40 and 
later GPUs. The following ! ags inform the compiler to disable the L1 cache:

-Xptxas -dlcm=cg

With the L1 cache disabled, all load requests to global memory go directly to the L2 cache; when an 
L2 miss occurs, the requests are serviced by DRAM. Each memory transaction may be conducted 
by one, two, or four segments, where one segment is 32 bytes.

The L1 cache can also be explicitly enabled with the following ! ag:

-Xptxas -dlcm=ca

With this ! ag set, global memory load requests " rst attempt to hit in L1 cache. On an L1 miss, the 
requests go to L2. On an L2 miss, the requests are serviced by DRAM. In this mode, a load memory 
request is serviced by a 128-byte device memory transaction.



__global__ void sumAddalignedacces(float *a, float *b, float *c, int n, int offset) { 

    for (int idx = offset, k = 0; idx < n; idx++, k++) 

C[k] = A[idx] + B[idx]; 

}

__global__ void missedAlignedAccessed(float *a, float *b, float *c, int n) { 

    int index = blockIdx.x * blockDim.x + threadIdx.x; 

    int k = i + offset; 

    if (int i < k) { c[i] = a[i] + b[I]; } 

}

Efficient memory access is crucial



Time your kernels

Offset SIMULATION TIME (SECONDS)

0 0.003968

12 0.004011

33 0.004024



Array of Structures (AOS)

struct innerStruct { 

float x; 

float y; 

};

struct innerStruct myAoS[N];
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Figure 4-22 illustrates the memory layout of both AoS and SoA approaches. Storing the example 
data in AoS format on the GPU and performing an operation that only requires the x ! eld would 
result in a 50 percent loss of bandwidth as y values are implicitly loaded in each 32-byte segment or 
128-byte cache line. An AoS format would also waste L2 cache space on unneeded y values. 

Storing the data in SoA fashion makes full use of GPU memory bandwidth. Because there is no 
interleaving of elements of the same ! eld, the SoA layout on the GPU provides coalesced memory 
accesses and can achieve more ef! cient global memory utilization.

x

t0 t1 t2 t3

y xx yy xx yy xx y

AoS memory layout
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SoA memory layout

FIGURE 4-22

AOS VERSUS SOA

Many parallel programming paradigms, in particular SIMD-style paradigms, pre-
fer SoA. In CUDA C programming, SoA is also typically preferred because data ele-
ments are pre-arranged for ef! cient coalesced access to global memory, since data 
elements of the same ! eld that would be referenced by the same memory operation 
are stored adjacent to each other.

To help understand the performance implications of accessing data in each data layout, you will 
compare two kernels with the same simple math operation: one implemented to process an AoS data 
layout, and the other for the SoA data layout.

Example: Simple Math with the AoS Data Layout
The following kernel is implemented using an AoS layout. The global memory array of structs is 
stored linearly with the variables x and y interleaved. The inputs and outputs of each thread are the 
same: a single innerStruct structure.

__global__ void testInnerStruct(innerStruct *data, 
    innerStruct *result, const int n) {
   unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;

   if (i < n) {
      innerStruct tmp = data[i];
      tmp.x += 10.f;
      tmp.y += 20.f;
      result[i] = tmp;
   }
}

Structure of Arrays (SOA)

struct innerStruct { 

float x[N]; 

float y[N]; 

};

struct innerArray moa;
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compare two kernels with the same simple math operation: one implemented to process an AoS data 
layout, and the other for the SoA data layout.

Example: Simple Math with the AoS Data Layout
The following kernel is implemented using an AoS layout. The global memory array of structs is 
stored linearly with the variables x and y interleaved. The inputs and outputs of each thread are the 
same: a single innerStruct structure.

__global__ void testInnerStruct(innerStruct *data, 
    innerStruct *result, const int n) {
   unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;

   if (i < n) {
      innerStruct tmp = data[i];
      tmp.x += 10.f;
      tmp.y += 20.f;
      result[i] = tmp;
   }
}
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Many parallel programming paradigms, in particular SIMD-style paradigms, pre-
fer SoA. In CUDA C programming, SoA is also typically preferred because data ele-
ments are pre-arranged for ef! cient coalesced access to global memory, since data 
elements of the same ! eld that would be referenced by the same memory operation 
are stored adjacent to each other.

To help understand the performance implications of accessing data in each data layout, you will 
compare two kernels with the same simple math operation: one implemented to process an AoS data 
layout, and the other for the SoA data layout.

Example: Simple Math with the AoS Data Layout
The following kernel is implemented using an AoS layout. The global memory array of structs is 
stored linearly with the variables x and y interleaved. The inputs and outputs of each thread are the 
same: a single innerStruct structure.

__global__ void testInnerStruct(innerStruct *data, 
    innerStruct *result, const int n) {
   unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;

   if (i < n) {
      innerStruct tmp = data[i];
      tmp.x += 10.f;
      tmp.y += 20.f;
      result[i] = tmp;
   }
}

Array of Structure versus Structure of Arrays



Sample code: EPIC in a predefined electric field

Basic assumptions

Only compute the force from electric field 
Neglect magnetic field 

Main function

Particle position 
Particle velocity
Electric field 

OUR PARTICLE CODE

▪ We want something very simple to work with but reasonable to understand
▪ Electrostatic particles in a predefined electric field

▪ Compute the force from the electric field
▪ Neglect magnetic field
▪ Assume fixed E field

▪ Accelerate the particle

▪ Move the particle
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OUR PARTICLE CODE

▪ We want something very simple to work with but reasonable to understand
▪ Electrostatic particles in a predefined electric field

▪ Compute the force from the electric field
▪ Neglect magnetic field
▪ Assume fixed E field

▪ Accelerate the particle

▪ Move the particle



AOS: EPIC in a predefined electric field

Struct for ParticleList

struct ParticleList { 

  // An array of particles Structures 

struct Particle* parts; 

// This represents the number of particles in the array 

int n; 

};

pl->parts = (struct Particle*)malloc(n * sizeof(struct Particle));

// Move particles by updating their position 
void move(struct ParticleList* pl, double dt, int DIM) { 
    for (int i = 0; i < pl->n; ++i) { 
        for (int j = 0; j < DIM; ++j) { 
            pl->parts[i].pos[j] += dt * pl->parts[i].vel[j]; 
            // Apply periodic boundary conditions 
            if (pl->parts[i].pos[j] > 1.0) { 
                pl->parts[i].pos[j] -= 1.0; 
            } 
            if (pl->parts[i].pos[j] < 0.0) { 
                pl->parts[i].pos[j] += 1.0; 
            } 
        } 
    } 
}

// Set the electric field for each particle 
void setE(struct ParticleList* pl, int DIM) { 
    for (int i = 0; i < pl->n; ++i) { 
        for (int j = 0; j < DIM; ++j) { 
            pl->parts[i].E[j] = sin(M_PI * pl->parts[i].pos[j]); 
        } 
    } 
} 

// Accelerate particles by updating their velocity 
void accel(struct ParticleList* pl, double dt, int DIM) { 
    for (int i = 0; i < pl->n; ++i) { 
        for (int j = 0; j < DIM; ++j) { 
            pl->parts[i].vel[j] += dt * pl->parts[i].q / pl->parts[i].m * pl->parts[i].E[j]; 
        } 
    } 
}

    // Main simulation loop 
    int step = 0; 
    for (double t = 0; t < 1; t += dt, ++step) { 
	      nvtxRangePush("Time Step");  
        nvtxRangePush("setE");	 
        setE(&p, DIM);  // Update electric field for all particles 
	      nvtxRangePop(); //SetE 
	      nvtxRangePush("accel"); 
        accel(&p, dt, DIM);  // Update velocities of all particles 
        nvtxRangePop(); // Accel 
	      nvtxRangePush("move"); 
	      move(&p, dt, DIM);  // Update positions of all particles 
	      nvtxRangePop();  
	      nvtxRangePop(); // Time Step 

        // Save data every ndumps steps 
        if (step % ndumps == 0) { 
            printData(&p, t, outFile, DIM);  // Save particle data 
        } 
    }



SOA: EPIC in a predefined electric field

Struct for ParticleList

struct ParticleList { 
    double *pos[MAX_DIM];  // Array of pointers for position 
    double *vel[MAX_DIM];  // Array of pointers for velocity 
    double *E[MAX_DIM];    // Array of pointers for electric field 
    double *q;             // Array for charges 
    double *m;             // Array for masses 
    int n;                 // Number of particles 

};

for (int i = 0; i < DIM; ++i) { 
    pl->pos[i] = (double*)malloc(n * sizeof(double)); 
    pl->vel[i] = (double*)malloc(n * sizeof(double)); 
    pl->E[i] = (double*)malloc(n * sizeof(double)); 
} 
pl->q = (double*)malloc(n * sizeof(double)); 
pl->m = (double*)malloc(n * sizeof(double));

for (int j = 0; j < DIM; ++j) { 
    for (int i = 0; i < pl->n; ++i) { 
        pl->E[j][i] = sin(M_PI * pl->pos[j][i]); 
    } 
} 

// Accelerate particles by updating their velocity 
void accel(struct ParticleList* pl, double dt, int DIM) { 
    for (int j = 0; j < DIM; ++j) { 
        for (int i = 0; i < pl->n; ++i) { 
            pl->vel[j][i] += dt * pl->q[i] / pl->m[i] * pl->E[j][i]; 
        } 
    } 
} 

// Move particles by updating their position 
void move(struct ParticleList* pl, double dt, int DIM) { 
    for (int j = 0; j < DIM; ++j) { 
        for (int i = 0; i < pl->n; ++i) { 
            pl->pos[j][i] += dt * pl->vel[j][i]; 
            // Apply periodic boundary conditions 
            if (pl->pos[j][i] > 1.0) { 
                pl->pos[j][i] -= 1.0; 
            } 
            if (pl->pos[j][i] < 0.0) { 
                pl->pos[j][i] += 1.0; 
            } 
        } 
    } 
}

Data access pattern in functions like `setE`, `accel`, and `move`:



Time your kernels

RUNS SIMULATION TIME (SECONDS)

AOS 38.33

SOA 35. 93

Input parameters 

number of Particles = 40000000
dimensions = 2 
dt = 0.1 
ndumps = 1000 



Time your kernels

Runs N Kernel Configuration Elapsed Time on Device

Pageable memory 40000000 (156250, 256) 19.93

Pinned memory 40000000 (156250, 256) 19.21

CudaMallocManaged 40000000 (156250, 256) 19.59



Nsight Compute

Peageable Memory

Unified Memory



Optimising memory transfers: cudaMemPrefetchAsync5



What is cudaMemPrefetchAsync?

cudaMemPrefetchAsync1

CUDA function that allows you to explicitly move data to a specific memory location before it is actually needed

Supported Platforms2

works on both CPU and GPU memory and is supported on NVIDIA GPUs



How to use cudaMemPrefetchAsync?

Before Kernel Launch1

Call cudaMemPrefetchAsync to prefetch data into the cache before 
the kernel that will use it runs

Syntax2

cudaMemPrefetchAsync(particles.pos, N * DIM * sizeof(float), device_id);  



When use cudaMemPrefetchAsync?

Memory Bound Kernels1

most beneficial for kernels that are limited by memory access latency or bandwidth

Irregular Access Patterns2

particularly useful for workloads with unpredictable or scattered memory access patterns

Asynchronous Execution3

designed to be used in asynchronous programming models, where data transfers and computations can overlap

Multi-GPU Environments4

help optimize data movement between multiple GPUs or between the CPU and GPU



Time your kernels

Runs N Kernel Configuration Elapsed Time on Device

Pageable memory 40000000 (156250, 256) 19.93

Pinned memory 40000000 (156250, 256) 19.21

CudaMallocManaged 40000000 (156250, 256) 19.59

Prefetching 40000000 (524288, 128) 19.33



Nsight Compute

Peageable Memory

Unified Memory

Prefetch Memory



Nsight system report

Look at this pattern



How can we overlap kernel and data transfer?6



kernel execution, memory transfer that execute in issue-order on the GPU 

By default, CUDA kernels are executed in a default stream 

Instructions are excited in order (in any stream): an instruction must be completed before the next one can begin

What is a STREAM?

1
Sequence of CUDA operations

Kernel 1 Kernel 2

Time

Kernel 3 Kernel 4 Kernel 5

DEFAULT STREAM 0



Multiple streams or Non-default streams can be created and utilise by CUDA programmers 

Kernels, with any single STREAM must execute in order 

However, kernels in different, non-default streams, can interact concurrently, have no fixed order of execution

Non-default Stream behaviour

2
Rules of governing the behaviour of streams

Kernel 1 Kernel 2

Time

Kernel 3 Kernel 4 Kernel 5

DEFAULT STREAM 0

NON- DEFAULT STREAM 1

NON- DEFAULT STREAM 2

Kernel 1 Kernel 2

Kernel 3 Kernel 4 Kernel 5

Kernel 6



Understanding CUDA Non-Streams behaviour7
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To help illustrate how CUDA streams are used in practice, the following is a common pattern for 
dispatching CUDA operations to multiple streams.

for (int i = 0; i < nStreams; i++) {
  int offset = i * bytesPerStream; 
  cudaMemcpyAsync(&d_a[offset], &a[offset], bytePerStream, streams[i]); 
  kernel<<grid, block, 0, streams[i]>>(&d_a[offset]);
  cudaMemcpyAsync(&a[offset], &d_a[offset], bytesPerStream, streams[i]);
}

for (int i = 0; i < nStreams; i++) {
    cudaStreamSynchronize(streams[i]);
}

Figure 6-1 illustrates a simple timeline of CUDA operations using three streams. Both data transfer 
and kernel computation are evenly distributed among three concurrent streams.

KernelMemory Copy (H2D)

H2D

Serial

Concurrent
Performance improvement

time

time

H2D

H2D

K1

K2

K3

Memory Copy (D2H)

D2H

D2H

D2H

FIGURE 6-1

You might notice that the data transfer operations are not executed concurrently in Figure 6-1, even 
though they are issued in separate streams. This contention is caused by a shared resource: the PCIe 
bus. While these operations are independent from the point-of-view of the programming model, 
because they share a common hardware resource their execution must be serialized. Devices with a 
duplex PCIe bus can overlap two data transfers, but they must be in different streams and in differ-
ent directions. In Figure 6-1, observe that data transfer from the host to the device in one stream is 
overlapped with data transfer from the device to the host in another.

The maximum number of concurrent kernels is device-dependent. Fermi devices support 16-way 
concurrency, and Kepler devices support 32-way concurrency. The number of concurrent kernels is 
further limited by available compute resource on devices, such as shared memory and registers. You 
will explore these limitations through examples later in this chapter.

Stream Scheduling
Conceptually, all streams can run simultaneously. However, this is not always the reality when map-
ping streams to physical hardware. This section will illustrate how concurrent kernel operations in 
multiple CUDA streams are scheduled by hardware.

Where it can be useful?

Kernel Enqueuing

Kernels are enqueued into a specific stream for 
execution on the GPU.

Memory Transfer

Data transfers between host and device can be enqueued 
asynchronously into streams.

Overlapped Execution

The GPU can execute kernels and memory transfers 
concurrently in different streams.

Asynchronous Execution with Streams



When use cudaMemPrefetchAsync?

How to use streams in a CUDA program?1

cudaStream_t stream;  cudaStreamCreate(&stream);          // Note that a pointer must be passed to `cudaCreateStream`.

How to use streams in a CUDA program?2

someKernel<<<number_of_blocks, threads_per_block, 0,stream>>>(); 

How to  Destroying Non-Default CUDA Streams?3

cudaStreamDestroy (stream);

Blocking and Non-blocking streams4

cudaStreamcreate is blocking streams, there is also exists non-blocking streams - But we do not cover it here



CUDA Stream Synchronization

• Explicit 

‣ cudaDeviceSynchronize() 
‣ Blocks until all CUDA operations are finished 

‣ cudaStreamSynchronize(stream)) 
‣ Blocks until all CUDA operations are finished within given stream 

‣ cudaEvenRecord(event, stream1), cudaStreamWaitEvent(stream2, event)  
‣ Blocks until all CUDA operations are finished within given stream

• Implicit 

‣ Page-locked memory allocation 
‣ cudaMallocHost, cudaHostAlloc 

‣ Device memory allocation 
‣ cudaMalloc 

‣ Blocking version of memory operations 
‣ cudaMemcpy, cudaMemset 

‣ Implicit synchronize all CUDA operations



Nsight system report 

Look at this pattern



Time your kernels

Runs N Kernel Configuration Elapsed Time on Device

Pageable memory 40000000 (156250, 256) 19.93

Pinned memory 40000000 (156250, 256) 19.21

CudaMallocManaged 40000000 (156250, 256) 19.59

Prefetching 40000000 (524288, 128) 19.33

Streams 40000000 (524288, 128) 20.06



Nsight Compute

Peageable Memory

Unified Memory

Stream



Multiple streaming-GPU

388 ❘ CHAPTER 9  MULTI-GPU PROGRAMMING
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 ➤ Synchronize execution across multiple GPUs using streams and events.

 ➤ Scale CUDA-aware MPI applications across a GPU-accelerated cluster.

You will see, through several examples, how applications can achieve near linear scalability when 
executing on multiple devices.

MOVING TO MULTIPLE GPUS
The most common reasons for adding multi-GPU support to an application are:

 ➤ Problem domain size: Existing data sets are too large to ! t into the memory of a single GPU.

 ➤ Throughput and ef! ciency: If a single task ! ts within a single GPU, you may be able to 
increase the throughput of an application by processing multiple tasks concurrently using 
multiple GPUs.

A multi-GPU system allows you to amortize the power consumption of a server node across GPUs 
by delivering more performance for a given unit of power consumed, while boosting throughput.

When converting your application to take advantage of multiple GPUs, it is important to properly 
design inter-GPU communication. The ef! ciency of inter-GPU data transfers depends on how GPUs 
are connected within a node, and across a cluster. There are two types of connectivity in multi-GPU 
systems:

 ➤ Multiple GPUs connected over the PCIe bus in a single node

 ➤ Multiple GPUs connected over a network switch in a cluster

These connection topologies are not mutually exclusive. Figure 9-1 illustrates a simpli! ed topology 
for a cluster with two compute nodes. GPU0 and GPU1 are connected via the PCIe bus on node0. 
Similarly, GPU2 and GPU3 are connected via the PCIe bus on node1. The two nodes (node0 
and node1) are connected to each other through In! niBand Switch.

GPU0

PCIe PCIe

InfiniBand Switch

GPU1 GPU2

node 0 node 1

GPU3

FIGURE 9-1

Each node may have one or more of the following: CPUs connected via CPU sockets and host chip-
sets, host DRAM, local storage devices, network Host Card Adaptors (HCAs), on-board network 



When use cudaMemPrefetchAsync?

Get number of GPUs1

int numGPUs; cudaGetDeviceCount(&numGPUs);

Determine the number of particles per GPU2

int particlesPerGPU = N / numGPUs;

 For each GPU, allocate memory, create streams, and launch kernels3

cudaStream_t streams1[numGPUs], streams2[numGPUs]; 

Final data transfer and synchronization4

cudaStreamSynchronize

// Non-coalesced access example 

for (int gpu = 0; gpu < numGPUs; ++gpu) { 

cudaSetDevice(gpu);  // Set the GPU 

int numBlocks = (particles[gpu].n + BLOCK_SIZE - 1) / 

BLOCK_SIZE;  

setEKernel<<<numBlocks, BLOCK_SIZE, 0, 

streams1[gpu]>>>(particles[gpu].d_pos, particles[gpu].d_E, 

particles[gpu].n, DIM); } 

cudaStreamSynchronize(streams2[gpu]);  // Ensure all data is 

transferred



Time your kernels

Runs N Kernel Configuration Elapsed Time on Device

Peag-able memory 40000000 (156250, 256) 19.93

Pinned memory 40000000 (156250, 256) 19.21

CudaMallocManaged 40000000 (156250, 256) 19.59

Prefetching 40000000 (524288, 128) 19.33

Multiple Streams 40000000 (524288, 256) 20.06

Multiple Streams-GPU 40000000 (39063, 256) 20.23



Nsight system report 

Look at this pattern
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Multiple stream single gpu

Multiple stream-gpu



Implementing higher dimensional grid in CUDA8



Block Dimension: 5x3 = 15 
Threads/Blocks 
(6 Blocks) x( 15 Threads/
Blocks) = 90 Total threads 
in Grid

Introducing the CUDA Programming Model ❘ 31
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Block (1, 1)

Thread
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Thread
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Thread
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Thread
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Thread
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Kernel
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(0, 0)

Block
(1, 0)

Block
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DeviceHost

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

FIGURE 2-5

All threads spawned by a single kernel launch are collectively called a grid. All threads in a grid 
share the same global memory space. A grid is made up of many thread blocks. A thread block is a 
group of threads that can cooperate with each other using:

 ➤ Block-local synchronization

 ➤ Block-local shared memory

Threads from different blocks cannot cooperate.

Threads rely on the following two unique coordinates to distinguish themselves from each other:

 ➤ blockIdx (block index within a grid)

 ➤ threadIdx (thread index within a block)

These variables appear as built-in, pre-initialized variables that can be accessed within kernel func-
tions. When a kernel function is executed, the coordinate variables blockIdx and threadIdx are 
assigned to each thread by the CUDA runtime. Based on the coordinates, you can assign portions of 
data to different threads.

The coordinate variable is of type uint3, a CUDA built-in vector type, derived from the basic inte-
ger type. It is a structure containing three unsigned integers, and the 1st, 2nd, and 3rd components 
are accessible through the fi elds x, y, and z respectively.

blockIdx.x
blockIdx.y
blockIdx.z

Host program specifies “grid-block-threads” 
configuration for kernel at run time

• All threads spawned by a single kernel launch are 

collectively called a grid  

• All threads in a grid share the same global memory space 

• A grid is made up of many thread blocks 

• Kernel needs to know run-time configuration  

• Built-in-three-dimensional type for threads (uint3) and 

blocks (dim3)

- threadIdx.x, threadIdx.y, threadIdx.z

- blockIdx.x, blockIdx.y, blockIdx.z

- blockDim.x, blockDim.y, blockDim.z

Grid Dimension: 3x2 = 6 Blocks

Multidimensional Blocks and Grids 



Type Variable Description

dim3 gridDim Dimensions of grid

uint3 blockIdx Index of block within grid 

dim3 blockDim Dimensions of block

uint3 ThreadIdx Index of thread within block 

Dimension Variable ID

1D (Dx) x

2D (Dx, Dy) y + y*Dx

3D (Dx, Dy, Dz) z + y*Dx + z*DxDy

Device Run-time Configuration



CUDA compute grid

CUDA compute grid supports 1-3 dimensions

gpu_kernel<<<4,2>>>(…)  

gpu_kernel<<<dim3(8, 4 , 1), dim3(4,2,1) >>>(…)  

gpu_kernel<<<dim3(16, 8 , 4), dim3(8, 4, 2) >>>(…) 

Useful for when

Dealing with multidimensional data 

CUDA's dim3 type for both 2D and 3D grids and blocks 

CUDA variables: gridDim.x, gridDim.y, gridDim.z, gridBlock.z,... 

GPU Thread Hierarchy

8

 In order to compute N elements on the GPU 
in parallel, at least N concurrent threads 
must be created on the device

 GPU threads are grouped togheter in teams
or blocks of threads

 Threads belonging to the same block or 
team can cooperate togheter exchanging 
data through a shared memory cache area 

 each block of threads will be executed 
independently

 no assumption is made on the blocks 
execution order

Grid
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Two matrix multiplication

M00 M10 M20 M30

N00 N10

N01 N11

N02 N12

N03 N13

P00 P10 P20 P30

j=0

i=0

M

N

P

P00 = M00 * N00 + M10 * N10 + M20 * N20 + +M30 * N30

P10 = M00 * N10 + M10 * N11 + M20 * N12 + +M30 * N13

Pij = ∑n
k=1 Mik ⋅ Nkj



Two matrix multiplication

void matrixMultOnHost(float* M, float* N, float* P, int Width){

for (int row = 0; row < Width; ++row){

for (int col = 0; col < Width; ++col){

     // accumulate element-wise products 

float pval = 0;

for (int k = 0; k < Width; ++k){

float a = M[row*Width + k];

float b = M[k*Width + col];

pval += a*b;

}

P[row*width + col] = pval; 

 }

}

}

P = M * N



CUDA compute grid supports 1-3 dimensionsCUDA compute grid (advanced)

CUDA compute grid supports 1-3 dimensions => eases moving multidimensional loops into GPU kernels

• CUDA “hides” loop headers into kernel launch parameters 
• Ranges are distributed between threads and blocks of threads 
• Blocks number is rounded up to handle the remainder

int i = blockIdx.x * blockDim.x + threadIdx.x; 
int j = blockIdx.y * blockDim.y + threadIdx.z;

int i = blockIdx.x * blockDim.x + threadIdx.x; 
int j = blockIdx.y * blockDim.y + threadIdx.z; 
int k = blockIdx.z * blockDim.z + threadIdx.z;

2D 

3D 

50 ❘ CHAPTER 2  CUDA PROGRAMMING MODEL
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In a matrix addition kernel, a thread is usually assigned one data element to process. Accessing the 
assigned data from global memory using block and thread index is the ! rst issue you need to solve. 
Typically, there are three kinds of indices for a 2D case you need to manage:

 ➤ Thread and block index

 ➤ Coordinate of a given point in the matrix

 ➤ Offset in linear global memory

For a given thread, you can obtain the offset in global memory from the block and thread index by 
! rst mapping the thread and block index to coordinates in the matrix, then mapping those matrix 
coordinates to a global memory location.

In the ! rst step, you can map the thread and block index to the coordinate of a matrix with the 
following formula:

ix = threadIdx.x + blockIdx.x * blockDim.x
iy = threadIdx.y + blockIdx.y * blockDim.y

In the second step, you can map a matrix coordinate to a global memory location/index with the 
following formula:

idx = iy * nx + ix

Figure 2-10 illustrates the corresponding relationship among block and thread indices, matrix coor-
dinates, and linear global memory indices.

nx

ny

matrix coordinate: (ix,iy)
global linear memory index: idx = iy*nx + ix

ix = threadIdx.x + blockIdx.x * blockDim.x

iy =
 threadIdx.y +

 blockIdx.y * blockD
im

.y

(ix,iy)

FIGURE 2-10



Two matrix multiplication on GPU

// Kernel for matrix multiplication 

__global__

void matrixMultiplicationKernel(float* M, float* N, float* Pd, int Width)  
{ 

int row = blockIdx.y * blockDim.y + threadIdx.y; 
int col = blockIdx.x * blockDim.x + threadIdx.x; 

     

    if (row < Width && col < Width) { 
        float sum = 0; 
        for (int k = 0; k < Width; ++k) { 
            sum += M[row * Width + k] * N[k * Width + col]; 
        } 
        Pd[row * Width + col] = sum; 
    } 
}

 

one Pd element. In the example, thread (0, 0) of block (0, 0) calculates
Pd0,0, whereas thread (0, 0) of block (1, 0) calculates Pd2,0. It is easy to
verify that one can identify the Pd element calculated by thread (0, 0)
of block (1, 0) with the formula given above: Pd[bx* TILE_WIDTH þ tx]

[by* TILE_WIDTH þ ty] ¼ Pd[1*2 þ 0][0*2 þ 0] ¼ Pd[2][0]. The reader
should work through the index derivation for as many threads as it takes to
become comfortable with the concept.

Once we have identified the indices for the Pd element to be calculated by
a thread, we also have identified the row (y) index ofMd and the column (x)
index of Nd for input values. As shown in Figure 4.3, the row index of Md
used by thread (tx, ty) of block (bx, by) is (by*TILE_WIDTH þ ty). The col-
umn index of Nd used by the same thread is (bx*TILE_WIDTH þ tx). We are
now ready to revise the kernel of Figure 3.11 into a version that uses multiple
blocks to calculate Pd.

Figure 4.5 illustrates the multiplication actions in each thread block. For
the small matrix multiplication, threads in block (0, 0) produce four dot
products: Thread (0, 0) generates Pd0,0 by calculating the dot product of
row 0 of Md and column 0 of Nd. Thread (1, 0) generates Pd1,0 by calcu-
lating the dot product of row 0 of Md and column 1 of Nd. The arrows of
Pd0,0, Pd1,0, Pd0,1, and Pd1,1 shows the row and column used for generat-
ing their result value.

Figure 4.6 shows a revised matrix multiplication kernel function that
uses multiple blocks. In Figure 4.6, each thread uses its blockIdx and
threadIdx values to identify the row index (Row) and the column index

Block(0,0)

Block(0,1) Block(1,1)

Block(1,0)

Pd0,0

Pd0,1

Pd0,2

Pd0,3

Pd1,0

Pd1,1

Pd1,2

Pd1,3

Pd2,0

Pd2,1

Pd2,2

Pd2,3

Pd3,0

Pd3,1

Pd3,2

Pd3,3

TILE_WIDTH = 2

FIGURE 4.4

A simplified example of using multiple blocks to calculate Pd.

66 CHAPTER 4 CUDA Threads



Two matrix multiplication on GPU

N Methods Time execution Speedup

2048x2048

Serial 25.18 1

CUDA 0.063 398.29



Unrolling loops9



Unrolling loops

__global__ void unrolledMatrixMultiplicationKernel(float *A, float *B, float *C, int n, int m, int p) { 
    int i = blockIdx.x * blockDim.x + threadIdx.x; // Row index of C 
    int j = blockIdx.y * blockDim.y + threadIdx.y; // Column index of C 

    if (i < n && j < p) { 
        float sum = 0; // Changed to float 
        for (int k = 0; k < m - 3; k += 4) { 
            sum += A[i * m + k] * B[k * p + j] + A[i * m + k + 1] * B[(k + 1) * p + j] + 
                         A[i * m + k + 2] * B[(k + 2) * p + j] + A[i * m + k + 3] * B[(k + 3) * p + j]; 
        } 
        // Handle remaining elements 
        for (int k = (m / 4) * 4; k < m; k++) { 
            sum += A[i * m + k] * B[k * p + j]; 
        } 
        C[i * p + j] = sum; 
    } 
}



Two matrix multiplication on GPU

N Methods Time execution Speedup

2048x2048

Serial 25.18 1

CUDA 0.063 398.29

Unrolled loop 0.055491 453.92



What Bandwidth can a kernel achieve?10



Theoretical Bandwidth vs. Effective Bandwidth

Theoretical Bandwidth

The absolute maximum bandwidth achievable with the hardware.

Effective Bandwidth

The measured bandwidth that a kernel actually achieves

Performance Gap

Effective bandwidth is often lower than theoretical bandwidth due to 
various factors.

Optimization Importance

Bridging the gap between theoretical and effective bandwidth is a 
key optimization goal.

What Bandwidth Can a Kernel Achieve? ❘ 179

c04.indd 08/19/2014 Page 179

WHAT BANDWIDTH CAN A KERNEL ACHIEVE?
When analyzing kernel performance, it is important to focus on memory latency, the time to satisfy 
an individual memory request, and memory bandwidth, the rate at which device memory can be 
accessed by an SM, measured in bytes per time unit.

In the last section, you experimented with two methods for improving kernel performance:

 ➤ Hiding memory latency by maximizing the number of concurrently executing warps, leading 
to better saturation of the bus by keeping more memory accesses in-! ight.

 ➤ Maximizing memory bandwidth ef" ciency by properly aligning and coalescing memory 
accesses.

However, sometimes a bad access pattern is inherent to the nature of the problem at hand. How 
good is good enough for such a kernel? What is the best achievable performance in suboptimal 
situations? In this section, you will use a matrix transpose example to learn how kernel band-
width can be adjusted using various tuning techniques. You will see that even with an inherently 
imperfect access pattern, there are still several options in redesigning your kernel to achieve good 
performance.

Memory Bandwidth
Most kernels are very sensitive to memory bandwidth, that is, they are memory bandwidth-bound. 
As a result, it is often important to focus on memory bandwidth metrics while tuning kernels. 
Bandwidth can be dramatically affected by how data in global memory is arranged, and how that 
data is accessed by a warp. There are two types of bandwidth:

 ➤ Theoretical bandwidth

 ➤ Effective bandwidth

Theoretical bandwidth is the absolute maximum bandwidth achievable with the hardware at hand. 
For a Fermi M2090 with ECC disabled, the peak theoretical device memory bandwidth is 
177.6 GB/s. Effective bandwidth is the measured bandwidth that a kernel actually achieves, and is 
calculated using the following equation:

effective bandwidth (GB/s) = (bytes read+bytes written) × −10 9

time elapsed

For example, for a copy of a 2048 × 2048 matrix containing 4-byte integers to and from the device, 
the effective bandwidth can be computed with the following formula:

effective bandwidth (GB/s) = 2048
time elapsed
× × × −048 4 2× 10 9

You will measure and tune the effective bandwidth of the matrix transpose kernel in the 
following section.
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Matrix Transpose Problem
Matrix transpose is a basic problem in linear algebra. While basic, it is used in many applications. 
Taking the transpose of a matrix implies exchanging each row with the corresponding column. 
Figure 4-23 illustrates a simple matrix and its transpose.
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FIGURE 4-23

The following is a host-based implementation of an out-of-place transpose algorithm using single-
precision ! oating-point values. Suppose the matrix is stored in a 1D array. The transpose can be 
easily calculated by transforming array index values to reverse row and column coordinates.

void transposeHost(float *out, float *in, const int nx, const int ny) {
   for (int iy = 0; iy < ny; ++iy) {
      for (int ix = 0; ix < nx; ++ix) {
         out[ix*ny+iy] = in[iy*nx+ix];
      }
   }
}

There are two 1D arrays storing matrices in this function: The input matrix in and the transposed 
matrix out. The matrix dimensionality is de" ned as nx rows by ny columns. The result of the trans-
pose operation when implemented on a 1D array is illustrated in Figure 4-24.
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data layout of transposed matrix

FIGURE 4-24

Observing the input and output layouts, you will notice:
 ➤ Reads: accessed by rows in the original matrix; results in coalesced access.

 ➤ Writes: accessed by columns in the transposed matrix; results in strided access.
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void transposeHost(float *out, float *in, const int nx, const int ny) { 
for (int iy = 0; iy < ny; ++iy)  { 
for (int ix = 0; ix < nx; ++ix)  { 
out[ix*ny+iy] = in[iy*nx+ix]; 
} 

      } 
}
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   if (ix < nx && iy < ny) {
      out[iy*nx + ix] = in[iy*nx + ix];
   }
}

__global__ void copyCol(float *out, float *in, const int nx, 
  const int ny) {
   unsigned int ix = blockDim.x * blockIdx.x + threadIdx.x;
   unsigned int iy = blockDim.y * blockIdx.y + threadIdx.y;

   if (ix < nx && iy < ny) {
      out[ix*ny + iy] = in[ix*ny + iy];
   }
}
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FIGURE 4-26

The main program for calling these upper and lower bound kernels is provided in Listing 4-6. You 
can also download the full source in transpose.cu from Wrox.com. Note that a kernel identi! er 
iKernel is used to select which kernel to run in this example using a switch statement at the bot-
tom of main.

LISTING 4-6: Matrix transpose (transpose.cu) (main function only listed)

int main(int argc, char **argv) {
   // set up device
   int dev = 0;
   cudaDeviceProp deviceProp;
   cudaGetDeviceProperties(&deviceProp, dev);
   printf("%s starting transpose at ", argv[0]);

__global__ 
void tranposeRow(float *out, float *in, const int nx, const int ny) { 

unsigned int ix = blockDim.x * blockIdx.x + threadIdx.x; 
unsigned int iy = blockDim.y * blockIdx.y + threadIdx.y; 

if (ix < nx && iy < ny) { out[iy*nx + ix] = in[iy*nx + ix];} 
}

__global__ 
void tranposeCol(float *out, float *in, const int nx, const int ny) { 

unsigned int ix = blockDim.x * blockIdx.x + threadIdx.x; 
unsigned int iy = blockDim.y * blockIdx.y + threadIdx.y; 

if (ix < nx && iy < ny) { out[ix*ny + iy] = in[ix*ny + iy]; } 
}



32X32

copyRow: Load/store using rows 376.32 41.81

copyCol: Load/store using cols 170.14 18.90

Effective Bandwidth of Kernels 

BLOCKSIZE KERNEL BANDWIDTH [GB/s] RATIO TO PEAK BANDWITDH (%)

Theoretical peak bandwidth 900.0

16 X16

copyRow: Load/store using rows 626.60 69.62

copyCol: Load/store using cols 275.42 30.60



Naive Transpose: Reading Rows versus Reading Columns

__global__ 
void tranposeNRow(float *out, float *in, const int nx, const int ny) { 

unsigned int ix = blockDim.x * blockIdx.x + threadIdx.x; 
unsigned int iy = blockDim.y * blockIdx.y + threadIdx.y; 

if (ix < nx && iy < ny) { out[ix * ny + iy] = in[iy * nx + ix]; } 
}

__global__ 
void tranposeNCol(float *out, float *in, const int nx, const int ny) { 

unsigned int ix = blockDim.x * blockIdx.x + threadIdx.x; 
unsigned int iy = blockDim.y * blockIdx.y + threadIdx.y; 

if (ix < nx && iy < ny) { out[iy*nx + ix] = in[ix*ny + iy]; } 
}

BLOCKSIZE KERNEL BANDWIDTH [GB/s] RATIO TO PEAK BANDWITDH (%)

Theoretical peak bandwidth 900.0

16 X16

copyRow: Load/store using rows 273.09 30.34

copyCol: Load/store using rows 296.09 32.90



Unrolling Transpose: Reading Rows versus Reading Columns

__global__ void transposeUnroll4Row(float *out, float *in, const int nx, 
const int ny) { 
	 unsigned int ix = blockDim.x * blockIdx.x*4 + threadIdx.x; 
	 unsigned int iy = blockDim.y * blockIdx.y + threadIdx.y; 
	 unsigned int ti = iy*nx + ix; unsigned int to = ix*ny + iy; 
	  
	 // access in columns 
	 if (ix+3*blockDim.x < nx && iy < ny) { 
	 	 out[to] = in[ti]; 
	 	 out[to + ny*blockDim.x] = in[ti+blockDim.x]; 
	 	 out[to + ny*2*blockDim.x] = in[ti+2*blockDim.x]; 
	 	 out[to + ny*3*blockDim.x] = in[ti+3*blockDim.x]; 
	 } 
}

__global__ void transposeUnroll4Col(float *out, float *in, const int nx, 
const int ny) { 
	 unsigned int ix = blockDim.x * blockIdx.x*4 + threadIdx.x; 
	 unsigned int iy = blockDim.y * blockIdx.y + threadIdx.y; 
	 unsigned int ti = iy*nx + ix; unsigned int to = ix*ny + iy; 

	 // access in columns 
	 if (ix+3*blockDim.x < nx && iy < ny) { 
	 	 out[ti] = in[to]; 
	 	 out[ti + blockDim.x] = in[to+ blockDim.x*ny]; 
	 	 out[ti + 2*blockDim.x] = in[to+ 2*blockDim.x*ny]; 
	 	 out[ti + 3*blockDim.x] = in[to+ 3*blockDim.x*ny]; 
	 } 
}



32X32

NaiveRow: Load/store using rows 160.73 17.86

NaiveCol: Load/store using rows 492.21 54.69

Effective Bandwidth of Kernels 

BLOCKSIZE KERNEL BANDWIDTH [GB/s] RATIO TO PEAK BANDWITDH (%)

Theoretical peak bandwidth 900.0

16 X16

NaiveRow: Load/store using rows 317.29 35.25

NaiveCol: Load/store using rows 742.74 82.53



GPU is throughput Horsepower 

Offer fast memory access and significant computing power
Importance of compute intensity and memory access patterns

Minimize the available data 

Wasting bandwidth can severely impact performance
Use structured arrays and maintain proper data order

Optimizing Performance

About 75% of issues in code adaptation stem from memory access problems 
Techniques for improving occupancy and latency hiding

Advanced Techniques

Efficient use of shared memory
Utilizing CUDA streams for concurrent execution 

Take away message
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GPU Memory Hierarchy

Global Memory

Large, off-chip memory with high latency 
and lower bandwidth compared to shared 
memory.

Shared Memory

Small, on-chip memory shared by all 
threads within a thread block, offering low 
latency and high bandwidth.

Register Memory

Private memory for each individual 
thread, with the fastest access but limited 
capacity.



Shared Memory Basics

Low Latency

Shared memory has much lower access latency 
compared to global memory, allowing for faster data 
processing.

High Bandwidth

Shared memory offers significantly higher 
bandwidth, enabling more efficient data transfer 
between threads.

Limited Capacity

Shared memory is limited in size, typically ranging 
from 16KB to 96KB per Streaming Multiprocessor 
(SM).

Thread Block Scope

Shared memory is shared among all threads within a 
thread block, allowing for efficient inter-thread 
communication.



Declaration

The __shared__ qualifier is used to declare shared memory 
variables in CUDA kernels

Scope

Shared memory variables are only accessible to threads 
within the same thread block

Thread Sync

Threads in a thread block can synchronize using the __syncthreads() intrinsic
Synchronization enables safe data exchange between threads within a block.

The __shared__ Qualifier



Shared memory matrix multiplication kernel
__global__ void sharedMemoryMatrixMultiplicationKernel(float* M, float* N, float* P, int Width) { 
    __shared__ float sharedM[BLOCK_SIZE][BLOCK_SIZE]; __shared__ float sharedN[BLOCK_SIZE][BLOCK_SIZE]; 
    int row = blockIdx.y * blockDim.y + threadIdx.y; int col = blockIdx.x * blockDim.x + threadIdx.x; 

    float sum = 0.0f; 
    for (int m = 0; m < (Width + BLOCK_SIZE - 1) / BLOCK_SIZE; ++m) { 
        // Load elements into shared memory 
        if (m * BLOCK_SIZE + threadIdx.x < Width && row < Width) { 
            sharedM[threadIdx.y][threadIdx.x] = M[row * Width + m * BLOCK_SIZE + threadIdx.x]; 
        } else { 
            sharedM[threadIdx.y][threadIdx.x] = 0.0f; // Fill with zero if out of bounds 
        } 

        if (m * BLOCK_SIZE + threadIdx.y < Width && col < Width) { 
            sharedN[threadIdx.y][threadIdx.x] = N[(m * BLOCK_SIZE + threadIdx.y) * Width + col]; 
        } else { 
            sharedN[threadIdx.y][threadIdx.x] = 0.0f; // Fill with zero if out of bounds 
        } 

        __syncthreads(); // Synchronize to make sure all threads have loaded their data 

        // Perform the multiplication 
        for (int k = 0; k < BLOCK_SIZE; ++k) { 
            sum += sharedM[threadIdx.y][k] * sharedN[k][threadIdx.x]; 
        } 
        __syncthreads(); // Synchronize before loading the next tile 
    } 
    // Write the result to global memory 
    if (row < Width && col < Width) { 
        P[row * Width + col] = sum; 
    } 
}



Two matrix multiplication on GPU

N Methods Time execution Speedup

2048x2048

Serial 25.18 1

CUDA 0.063 398.29

Shared memory 0.055491 453.92


