
OpenACC programming
on NVIDIA GPUs

Epicure hackathon @ CINECA, Casalecchio di Reno (BO) Italy
28-31 October 2024

< sequential code >

#pragma acc parallel loop
for(i = 0; i < N; i++)

{
< loop code >

}

#pragma acc parallel loop
for(i = 0; i < N; i++)

{
< loop code >

}

< sequential code >

Why OpenACC?
Incremental approach

The runtime can handle data movements,
compiler optimizes the offload for the
underlying hardware

Avoid source code duplication
Based on compiler directives,
acc activated via compilation flags

More portable
Supported also by AMD GPUs

< cpu code >
#pragma acc parallel loop
for(i = 0; i < N; i++)

{
output[i] = input[i] + scalar

}
< cpu code >

Coding with OpenACC

There must be no data dependencies
inside the loop (each element
computation at i is independent)

The compiler will compile the loop for
the GPU

Each GPU thread will execute the
operation on a subset of the iteration
range

4 5 10 11 3

7 8 13 14 6

< cpu code >
#pragma acc parallel loop
for(i = 1; i < N; i++)

{
output[i] = output[i-1] + scalar

}
< cpu code >

Data dependencies

Not all loops are parallel!

If there dependencies between
elements in the array, the GPU thread
might access an element after it has
changed

This provides wrong results4 5 10 11 3

4 1 5 1 -4

OpenACC syntax

A pragma in C/C++ gives instructions to the compiler on how to compile the code. Compilers
that do not understand a particular pragma can freely ignore it.

A directive in Fortran is a specially formatted comment that likewise instructions the compiler
in it compilation of the code and can be freely ignored.

“acc” informs the compiler that what will come is an OpenACC directive

Directives are commands in OpenACC for altering our code.

Clauses are specifiers or additions to directives.

The parallel directive

parallel instructs the compiler
to create parallel gangs

Gangs are independent groups of
worker threads on the accelerator

The code contained within a
parallel directive is executed
redundantly by all parallel gangs

< sequential code >

#pragma acc parallel
{

<code for gpu>
}

The parallel directive

!$acc parallel

< code for gpu >

!$acc end parallel

The compiler will
generate 1 or more

parallel gangs, which
execute redundantly.

The loop directive

!$acc parallel

do i = 1, N
< some operation >

end do

!$acc end parallel

this way, the same loop is
executed by each gang.

We want to distribute
loop iterations among

gangs!

The loop directive

!$acc parallel
!$acc loop
do i = 1, N

< some operation >
end do
!$acc end loop
!$acc end parallel

the loop directive is used
to distribute loop

iterations among gangs

i = 1-5 i = 6-10

i = 11-15

The parallel loop directive

parallel marks a region of code where
you parallel execution should occur

The loop directive is used to instruct
the compiler to parallelize the
iterations of the next loop to run
across the parallel gangs

The parallel loop directive

parallel marks a region of code where
you parallel execution should occur

The loop directive is used to instruct
the compiler to parallelize the
iterations of the next loop to run
across the parallel gangs

parallel loop can also be fused in a
single direcive

The kernels directive

The kernels directive instructs the
compiler to search for parallel loops in
the code

The compiler will analyze the loops and
parallelize those it finds safe and
profitable to do so

The kernels directive can be applied to
regions containing multiple loop nests

Supports Fortran array syntax

#pragma acc kernels
{
 for(int i = 0; i < N; i++)
 a[i] = 0;

 for(int j = 0; j < M; j++)
 b[i] = 0;
}

!$acc kernels
a(:) = 1
b(:) = 2
c(:) = a(:) + b(:)
!$acc end kernels

Loop nests

loop directives can be nested to
parallelize multi-dimensional loops

This allows the compiler to
implement more levels of
parallelism, and increase
performance, if resources are
available

If more levels are not available, the
inner loop directives will be ignored

Reductions

The inner-most loop is not parallelizable, multiple threads could attempt to
write to tmp → we should expect to receive erroneous results

do k = 1, size
 do j = 1, size
 tmp = 0.0
 !$acc parallel loop
 do i = 1, size
 tmp = tmp + a(i,k) * b(k,j)
 end do
 c(i,j) = tmp
 end do
end do

Reductions

The inner-most loop is not parallelizable, multiple threads could attempt to
write to tmp → we should expect to receive erroneous results

To fix this, we should use the reduction clause

do k = 1, size
 do j = 1, size
 tmp = 0.0
 !$acc parallel loop reduction(+:tmp)
 do i = 1, size
 tmp = tmp + a(i,k) * b(k,j)
 end do
 c(i,j) = tmp
 end do
end do

do k = 1, size
 do j = 1, size
 tmp = 0.0
 !$acc parallel loop reduction(+:tmp)
 do i = 1, size
 tmp = tmp + a(i,k) * b(k,j)
 end do
 c(i,j) = tmp
 end do
end do

Reductions

The inner-most loop is not parallelizable, multiple threads could attempt to
write to tmp → we should expect to receive erroneous results

To fix this, we should use the reduction clause

Each thread group will its own private
copy of the reduction variable and
perform a partial reduction on their
loop iterations

do k = 1, size
 do j = 1, size
 tmp = 0.0
 !$acc parallel loop reduction(+:tmp)
 do i = 1, size
 tmp = tmp + a(i,k) * b(k,j)
 end do
 c(i,j) = tmp
 end do
end do

Reductions

The inner-most loop is not parallelizable, multiple threads could attempt to
write to tmp → we should expect to receive erroneous results

To fix this, we should use the reduction clause

Each thread group will its own private
copy of the reduction variable and
perform a partial reduction on their
loop iterations

After the loop, a final reduction will be
performed to produce a single global
result

Reduction operators
Operator Description Example

+ Addition/Summation reduction(+:sum)

* Multiplication/Product reduction(*:product)

max Maximum value reduction(max:maximum)

min Minimum value reduction(min:minimum)

& Bitwise and reduction(&:val)

| Bitwise or reduction(|:val)

&& Logical and reduction(&&:val)

|| Logical or reduction(||:val)

Reductions

The reduction variable may not
be an array element

The reduction variable may not be
a C struct member, a C++ class or
struct member, or a Fortran derived
type member

Sequential

#pragma acc parallel loop
for(i = 0; i < size; i++)
 #pragma acc loop
 for(j = 0; j < size; j++)
 #pragma acc loop seq
 for(k = 0; k < size; k++)
 c[i][j] += a[i][k] * b[k][j];

The seq clause will tell the
compiler to run the loop
sequentially

The compiler will parallelize the
outer loops across the parallel
threads, but each thread will run
the inner-most loop sequentially

The compiler may automatically
apply the seq clause to loops as
well

Privatizations

double tmp[3];
#pragma acc kernels loop private(tmp[0:3])
for(i = 0; i < size; i++)
{
 tmp[0] = <value>;
 tmp[1] = <value>;
 tmp[2] = <value>;
}
// note that the host value of “tmp”
// remains unchanged.

Each thread can have a private copy
of every variable

- private variables are
uninitialized.

- firstprivate private values are
initialized to the same value
used on the host.

Unless doing a reduction, the value
on the host outside the parallel
region is unchanged

Privatizations

double tmp[3];
#pragma acc kernels loop private(tmp[0:3])
for(i = 0; i < size; i++) {
 // the tmp array is private to each
iteration of the outer loop
 tmp[0] = <value>;
 tmp[1] = <value>;
 tmp[2] = <value>;
 #pragma acc loop
 for (j = 0; j < size2; j++) {
 // but tmp is shared amongst the threads
 // in the inner loop
 array[i][j] = tmp[0]+tmp[1]+tmp[2];
 }
}

Variables in private or firstprivate
clause are private to the loop level on
which the clause appears.

Private variables on an outer loop are
shared within inner loops

Scalars

By default, scalars are firstprivate when used in a parallel region and private when
used in a kernels region.

Except in some cases, scalars do not need to be added to a private clause. These
cases may include but are not limited to:

1. Scalars with global storage such as global variables in C/C++, Module
variables in Fortran

2. When the scalar is passed by reference to a device subroutine
3. When the scalar is used as an rvalue after the compute region, aka “live-out”

Note that putting scalars in a private clause may actually hurt performance!

Collapse clause

collapse(N) combines the next N tightly
nested loops

Can turn a multidimensional loop nest
into a single-dimension loop

This can be extremely useful for increasing
memory locality, as well as creating larger
loops to expose more parallelism

#pragma acc parallel loop collapse(2)
for(i = 0; i < size; i++){
 for(j = 0; j < size; j++){
 double tmp = 0.0f;
 #pragma acc loop reduction(+:tmp)
 for(k = 0; k < size; k++){
 tmp += a[i][k] * b[k][j];
 }
 }
 c[i][j] = tmp;
}

Compiling for GPUs
nvc -fast -acc -gpu=cc80,cuda12.3 -Minfo=accel main.c
nvc++ -fast -acc -gpu=cc80,cuda12.3 -Minfo=accel main.cpp
nvfortran -fast -acc -gpu=cc80,cuda12.3 -Minfo=accel main.f90

daxpy:
 19, Generating NVIDIA GPU code
 20, !$acc loop gang, vector(128) ! blockidx%x threadidx%x
 19, Generating implicit
copyout(y(1:2147483647),x(1:2147483647),d(1:2147483647)) [if not already
present]
 26, Generating NVIDIA GPU code
 27, !$acc loop gang, vector(128) ! blockidx%x threadidx%x
 26, Generating implicit copyin(y(1:2147483647),x(1:2147483647)) [if not
already present]
 Generating implicit copyout(d(1:2147483647)) [if not already present]

Compiling for multicore
nvc –fast –acc –ta=multicore –Minfo=accel main.c
nvc++ –fast –acc –ta=multicore –Minfo=accel main.cpp
nvfortran -fast -acc –ta=multicore –Minfo=accel main.f90

daxpy:
 19, Generating Multicore code
 20, !$acc loop gang
 26, Generating Multicore code
 27, !$acc loop gang

Data management

Data must be visible on the device when
running parallel code

Data must be visible on the host when
running sequential code

When the host and device don’t share
memory, data movement must occur

To maximize performance, the
programmer should avoid all unnecessary
data transfers

Implicit data management

 do i = 1, N

 D(i) = A* X(i) + Y(i)

 end do

Implicit data management

 !$acc parallel do

 do i = 1, N

 D(i) = A* X(i) + Y(i)

 end do

 !$acc end parallel do

Implicit data management

 !$acc parallel do

 do i = 1, N

 D(i) = A* X(i) + Y(i)

 end do

 !$acc end parallel do

pgfortran -fast -acc -gpu=cc80,cuda12.3 -Minfo=accel -o
binary daxpy.f90
daxpy:

Implicit data management

 !$acc parallel do

 do i = 1, N

 D(i) = A* X(i) + Y(i)

 end do

 !$acc end parallel do

pgfortran -fast -acc -gpu=cc80,cuda12.3 -Minfo=accel -o
binary daxpy.f90
daxpy:
 19, Generating NVIDIA GPU code
 20, !$acc loop gang, vector(128) ! blockidx%x
threadidx%x
 19, Generating implicit
copyout(y(1:2147483647),x(1:2147483647),d(1:2147483647)) [if
not already present]
 26, Generating NVIDIA GPU code
 27, !$acc loop gang, vector(128) ! blockidx%x
threadidx%x
 26, Generating implicit
copyin(y(1:2147483647),x(1:2147483647)) [if not already
present]
 Generating implicit copyout(d(1:2147483647)) [if not
already present]

CPU

GPU

OFFLOADED REGION

Traces in heterogeneous programs

time

CPU

GPU

OFFLOADED REGION

Traces in heterogeneous programs

time

location

CPU

GPU

OFFLOADED REGION

Traces in heterogeneous programs

CPU

GPU

OFFLOADED REGION

DATA IN

Traces in heterogeneous programs

CPU

GPU

OFFLOADED REGION

DATA IN

Traces in heterogeneous programs

CPU

GPU

OFFLOADED REGION

DATA IN L

Traces in heterogeneous programs

GPU KERNEL

CPU

GPU

OFFLOADED REGION

DATA IN L

Traces in heterogeneous programs

CPU

GPU

OFFLOADED REGION

DATA IN

GPU KERNEL

L WAIT

Traces in heterogeneous programs

CPU

GPU

OFFLOADED REGION

DATA IN

GPU KERNEL

L WAIT

Traces in heterogeneous programs

CPU

GPU

OFFLOADED REGION

DATA IN

GPU KERNEL

L WAIT DATA OUT

Traces in heterogeneous programs

CPU

GPU

OFFLOADED REGION

DATA IN

GPU KERNEL

L WAIT DATA OUT

Traces in heterogeneous programs

Data clauses
Data clauses allow the programmer to tell the compiler which data to move and when

- Fortran programmers can rely on the self-describing nature of Fortran arrays
- C/C++ programmers will frequently need to give additional information to the

compiler so that it will know how large an array to allocate on the device and
how much data needs to be copied

e.g. copy(array[:]) copy(array[:]) copy(array[:N])

Data clauses
Data clauses allow the programmer to tell the compiler which data to move and when

- Fortran programmers can rely on the self-describing nature of Fortran arrays
- C/C++ programmers will frequently need to give additional information to the

compiler so that it will know how large an array to allocate on the device and
how much data needs to be copied

e.g. copy(array[:]) copy(array[:]) copy(array[:N])

array shaping: can move also chunks of arrays (minimize data movements)

Data clauses

Implicit data management
while (error > tol && iter < iter_max)
{
 error = 0.0;
 #pragma acc kernels
 {
 for(int j = 1; j < n-1; j++)
 {
 for(int i = 1; i < m-1; i++)
 {
 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1]+ A[j-1][i] + A[j+1][i]);
 error = fmax(error, fabs(Anew[j][i] - A[j][i]));
 }
 }
 for(int j = 1; j < n-1; j++)
 {
 for(int i = 1; i < m-1; i++)
 {
 A[j][i] = Anew[j][i];
 }
 }
 }
}

The runtime
automatically handles
data movements

For any parallel or
kernels construct, it will
move data in and out the
GPU automatically

This might be very
inefficient if the parallel
region is inside a loop →
data would be moved
in/out the GPU for each
“kernels”

Structured data directives

 #pragma acc parallel loop
 for(int i = 0; i < N; i++){
 c[i] = a[i] + b[i];
 }

a, b, c must be visible in the device
memory

a → in
b → in
c → out

Structured data directives

 #pragma acc data copyin(a[0:N],b[0:N])
copyout(c[0:N])

 #pragma acc parallel loop
 for(int i = 0; i < N; i++){
 c[i] = a[i] + b[i];
 }

 #pragma acc end data

a, b, c must be visible in the device
memory

a → in
b → in
c → out

we can explicitly tell the compiler
to copyin(a,b) and copyout(c) for a
given region of the source code

The acc data directives opens a
data region

Structured data directives

 #pragma acc parallel loop
 for(int i = 0; i < N; i++){
 a[i] = a[i] + 1.0;
 }
 #pragma acc parallel loop
 for(int i = 0; i < N; i++){
 b[i] = 2.0;
 }
 #pragma acc parallel loop
 for(int i = 0; i < N; i++){
 c[i] = a[i] + b[i];
 }

a copied in an out

b copied in and out

a,b copied in and c copied out

Structured data directives

 #pragma acc data copyin(a[0:N],b[0:N])
copyout(c[0:N])

 #pragma acc parallel loop
 for(int i = 0; i < N; i++){
 a[i] = a[i] + 1.0;
 }
 #pragma acc parallel loop
 for(int i = 0; i < N; i++){
 b[i] = 2.0;
 }
 #pragma acc parallel loop
 for(int i = 0; i < N; i++){
 c[i] = a[i] + b[i];
 }

 #pragma acc end data

Inside the data region, the
runtime knows a,b,c are in GPU
memory

Enclosing parallel/kernels in the
same data region reduces the
number of data copies

a,b copied in

…gpu work…

c copied out

Implicit data region

#pragma acc parallel loop [copy(a[0:N])]
for(int i = 0; i < N; i++){
 a[i] = a[i] + 1.0;
}

parallel and kernels open an
implicit data region

The data region extends for the
extension of the parallel/kernel
region

#pragma acc data copy(a[0:N]){
 #pragma acc parallel loop
 for(int i = 0; i < N; i++){
 a[i] = a[i] + 1.0;
 }
}

Unstructured data directives

 #pragma acc enter data copyin(a[0:N],b[0:N])

 #pragma acc parallel loop
 for(int i = 0; i < N; i++){
 a[i] = a[i] + 1.0;
 }
 #pragma acc parallel loop
 for(int i = 0; i < N; i++){
 b[i] = 2.0;
 }
 #pragma acc parallel loop
 for(int i = 0; i < N; i++){
 c[i] = a[i] + b[i];
 }

 #pragma acc exit data copyout(c[0:N])

enter/exit data are used to
create/upload or
delete/download data

enter data
- + create
- + copyin

exit data
- + delete
- + copyout

enter/exit data perform only
data movement, do not open
any data region

Unstructured data directives

Unstructured data directives
Data lifetime might not be restricted to a single
routine

data is created

Unstructured data directives
Data lifetime might not be restricted to a single
routine

data is created

data is used

Unstructured data directives
Data lifetime might not be restricted to a single
routine

data is created

data is used

data is deallocated

Unstructured data directives
Data lifetime might not be restricted to a single
routine

data is created

data is used

data is deallocated

Unstructured data directives

Be careful when you manage data across multiple routines.

If you try copying data that is already PRESENT on the GPU, the copy is not done.

< a modified on the host >

#pragma acc enter data copyin(a[0:N]) → host and device copies are in sync

< a modified on the host > → host and device copies are out of sync

#pragma acc data copyin(a[0:N]) ! copy is ignored

< a used on the GPU > → host and device copies are out of sync

Update directive
Data is already on the GPU and you need to update the value on the CPU or device

! The update can also be partial (shaping) , e.g. #pragma acc update host(a[0:N/2])

do_something_on_device()

do_something_on_host()

#pragma acc update host(a)

#pragma acc update device(a)

Copy “a” from GPU to CPU

Copy “a” from CPU to GPU

Update directive
update: Explicit transfers data between the host and device
Useful when you want to synchronise data in the middle of a data
region

self / host makes host data agree with device data
device makes device data agree with host data

#pragma acc update self(x[0:count])

#pragma acc update device(x[0:count])

!$acc update self(x[1:count])

!$acc update device(x[1:count])

C/C++

Fortran

A A*

B B*

#pragma acc update device(A[0:N])

#pragma acc update self(B[0:N])

Data must exist on device and the host

Declare directive

The declare directive specifies that a variable
or array has to be allocated in the device
memory for the duration of the implicit data
region of function.

✳ Used in the declaration section of function

✳ May specify whether the data have to be
transferred and how (create, copy, etc)

✳ If referring to global variables, the implicit
region is the whole program

#pragma acc declare create(a)

real a(100)
!$acc declare create(a)

C/C++

Fortran

#pragma acc declare create(a[0:N])

Gang, worker, vector

Gang, worker, vector

Gang, worker, vector

Gang, worker, vector

Gangs do not share resources, do not
synchronize, are independent groups
of working units

Workers in a gang can share resources,
can synch, each one having a roller of a
given size (vector length)

A vector has the ability to run a single
instruction on multiple data elements

Gang, worker, vector

The gang parallelism applies to the outer
loop

A vector is the lowest level of
parallelism, and every gang will have at
least 1 vector

Usually the compiler generates N gangs
with one worker and a vector of size 128
on NVIDIA gpus

check with -Minfo!

#pragma acc parallel loop gang
for(i = 0; i < N; i++)
 #pragma acc loop vector
 for(j = 0; j < M; j++)
 < loop code >

Gang, worker, vector

Sometimes having more workers in a
gang helps to better map the data

Especially if the size for the vector length
is small

#pragma acc parallel num_workers(2)
#pragma acc loop gang worker
for(i = 0; i < N; i++)
 #pragma acc loop vector
 for(j = 0; j < M; j++)
 < loop code >

Gang, worker, vector

Sometimes having more workers in a
gang helps to better map the data

Especially if the size for the vector length
is small

#pragma acc parallel num_workers(2)
#pragma acc loop gang worker
for(i = 0; i < N; i++)
 #pragma acc loop vector
 for(j = 0; j < M; j++)
 < loop code >

Gang, worker, vector

The size of a gang is

num_workers * vector_length

the maximum vector_length is 1024

the minimum vector_length (NVIDA) is 32

the maximum size of a gang is 1024

parallel:

✳ num_gangs(n)
✳ num_workers(n)
✳ vector_length(n)

kernels:

✳ gang(n)
✳ worker(n)
✳ vector(n)

Routine directive

routine Specifies that the compiler should
generate a device copy of the function/subroutine

CLAUSES

✳ gang/worker/vector/seq:
parallelism for loops contained in the routine

✳ bind()
optional name of the routine at call-site

✳ no_host

the routine will only be used on the device

void square_array(float *arr, int length) {
 for(int i = 0; i < length; ++i) {
 arr[i] = arr[i] * arr[i];
 }
}

int main() {
 const int size = 100; float data[size];

 #pragma acc parallel loop
 for(int i = 0; i < size; ++i) {
 data[i] = i;
 }
 for(int i = 0; i < size; ++i) {
 square_array(&data[i], 1);
 }
}

Routine directive

routine Specifies that the compiler should
generate a device copy of the function/subroutine

CLAUSES

✳ gang/worker/vector/seq:
parallelism for loops contained in the routine

✳ bind()
optional name of the routine at call-site

✳ no_host

the routine will only be used on the device

#pragma acc routine worker
void square_array(float *arr, int length) {
 #pragma acc parallel loop worker
 for(int i = 0; i < length; ++i) {
 arr[i] = arr[i] * arr[i];
 }
}

int main() {
 const int size = 100; float data[size];

 #pragma acc parallel loop
 for(int i = 0; i < size; ++i) {
 data[i] = i;
 }
 #pragma acc parallel
 {
 #pragma acc loop gang
 for(int i = 0; i < size; ++i) {
 square_array(&data[i], 1);
 }
 }
}

Routine directive

The seq clause in the routine directive for OpenACC is
used to indicate that the specified routine should be
executed sequentially in one device thread (GPU).

At call site
✳ Function is called in a parallel loop region (parallel loop)
✳ Each thread in the loop will call it and execute its own instance

At call the compiler needs to know
✳ Function will be available on the GPU (!$acc routine)
✳ It is a sequential routine, executed by one device thread (seq)

 module b1
 contains
 real function sqab(a)
 !$acc routine seq
 real :: a
 sqab = sqrt(abs(a))
 end function
 end module

 subroutine test(x, n)
 use b1
 real, dimension(*) :: x
 integer :: n
 integer :: i
 !$acc parallel loop copy(x(1:n))
 do i = 1, n
 x(i) = sqab(x(i))
 enddo
 end subroutine

Asynchronous programming

for (i = 0; i<n: i++)
 a[i] = 1

for (i = 0; i<n: i++)
 b[i] = 1

for (i = 0; i<n: i++)
c[i] = a[i] + b[i]

Asynchronous programming

POPULATE A

POPULATE B

CALCULATE A+B

SYNC
for (i = 0; i<n: i++)
 a[i] = 1

for (i = 0; i<n: i++)
 b[i] = 1

for (i = 0; i<n: i++)
c[i] = a[i] + b[i]

Asynchronous programming

POPULATE A

POPULATE B

CALCULATE A+B

POPULATE A POPULATE B

CALCULATE A+B

SYNC ASYNC
for (i = 0; i<n: i++)
 a[i] = 1

for (i = 0; i<n: i++)
 b[i] = 1

for (i = 0; i<n: i++)
c[i] = a[i] + b[i]

Enables concurrent operations on a GPU

#pragma acc loop async
for (i = 0; i<n: i++)
c[i] = a[i] + b[i]

async

It can be used on parallel, kernel and
update directives

CPU LAUNCHES
PARALLEL LOOP

COMPUTE

So far all of the OpenACC directives operates synchronously with the host, i.e host will wait for
device to complete its execution.

Asynchronous programming

#pragma acc loop async
for (i = 0; i<n: i++)
c[i] = a[i] + b[i]
#pragma acc update self[c[0:N]] async

async

It can be used on parallel, kernel and
update directives

CPU LAUNCHES
PARALLEL LOOP

COMPUTE

CPU LAUNCHES
AN UPDATE

So far all of the OpenACC directives operates synchronously with the host, i.e host will wait for
device to complete its execution.

UPDATE

Asynchronous programming

#pragma acc loop async
for (i = 0; i<n: i++)
c[i] = a[i] + b[i]
#pragma acc update self[c[0:N]] async
#pragma acc wait

async

It can be used on parallel, kernel and
update directives

wait

Instructs the runtime to wait for the
past asynchronous operation to
complete before proceeding

CPU LAUNCHES
PARALLEL LOOP

COMPUTE

CPU LAUNCHES
AN UPDATE

So far all of the OpenACC directives operates synchronously with the host, i.e host will wait for
device to complete its execution.

CPU WAITS

UPDATE

Asynchronous programming

#pragma acc loop async(N)
for (i = 0; i<n: i++)
c[i] = a[i] + b[i]
#pragma acc update self[c[0:N]] async(N)
#pragma acc wait

async

It can be used on parallel, kernel and
update directives

wait

Instructs the runtime to wait for the
past asynchronous operation to
complete before proceeding

async(N)

a number can be added to async and
wait, in order to identify the “queue”
for the async operation

So far all of the OpenACC directives operates synchronously with the host, i.e host will wait for
device to complete its execution.

Asynchronous programming

CPU LAUNCHES
OPERATION

GPU EXECUTES OPERATION

CPU LAUNCHES
OPERATION

GPU EXECUTES OPERATION

GPU EXECUTES
OPERATION

CPU LAUNCHES
OPERATION

queue 0

queue 1

queue 2

Asynchronous programming
#pragma acc parallel loop async(1)
for (i = 0; i<n: i++)
 a[i] = 1

#pragma acc parallel loop async(2)
for (i = 0; i<n: i++)
 b[i] = 1
#pragma acc wait(1) async(2)
#pragma acc loop async(2)
for (i = 0; i<n: i++)
c[i] = a[i] + b[i]
#pragma acc update self[c[0:N]] async(2)
#pragma acc wait

THIS KERNEL WAITS FOR OPERATION IN 1 TO BE COMPLETED AND
THEN IS PUT IN THE QUEUE OF STREAM 2

WHEN STREAM2 HAS COMPLETED THE OPERATION, THE
HOST IS UPDATED

CPU
LAUNCHES
OPERATION

CPU
LAUNCHES
OPERATION

KERNEL 2 KERNEL 3

CPU LAUNCHES
OPERATION

queue 1

queue 2

KERNEL 1

WAIT

WAIT

DATA

UPDATE

KERNEL 1 IS COMPUTED ON “STREAM” 1

KERNEL 2 IS COMPUTED ON “STREAM” 2

Asynchronous programming

CUDA - OpenACC interoperability

How to use a CUDA APIs in OpenACC code?

CUDA : use device buffer as input/output

ierr = ierr + cufftExecC2C(iplan1,a_d,b_d,CUFFT_FORWARD)

CUDA - OpenACC interoperability

How to use a CUDA APIs in OpenACC code?

CUDA : use device buffer as input/output

ierr = ierr + cufftExecC2C(iplan1,a_d,b_d,CUFFT_FORWARD)

OpenACC : the name of the variable is the the same for device and host
buffer. host_data use_device directives clarifies which buffer should
be passed.

CUDA - OpenACC interoperability

How to use a CUDA APIs in OpenACC code?

CUDA : use device buffer as input/output

ierr = ierr + cufftExecC2C(iplan1,a_d,b_d,CUFFT_FORWARD)

OpenACC : the name of the variable is the the same for device and host
buffer. host_data use_device directives clarifies which buffer should
be passed.

#pragma acc host_data use_device(a,b)
ierr = ierr + cufftExecC2C(iplan1,a,b,CUFFT_FORWARD)
#pragma acc end host_data

CUDA libraries

✳ Offload math to GPU
✳ Support data moved both with CUDA

and OpenACC

Available in the CUDA toolkit or HPCSDK
suite, can be linked by compilation flag

 Multiple versions available

✳ single gpu (e.g. cuBLAS)
● batched
● multi-stream

✳ single-process multi GPU (cuBLASXt)
✳ multi-process multi-GPU (cuBLASMp)

CUDA libraries
CUDAFortran provides

✳ interfaces to CUDA C library APIs (cuBLAS, cuFFT, cuRANDS, cuSPARSE,...)
✳ interfaces to CPU or GPU API depending on the input type

use cufft
use openacc
. . .
!$acc data copyin(a), copyout(b,c)
ierr = cufftPlan2D(iplan1,m,n,CUFFT_C2C)
ierr = ierr +
cufftSetStream(iplan1,acc_get_cuda_stream(acc_async_sync))
!$acc host_data use_device(a,b,c)
ierr = ierr + cufftExecC2C(iplan1,a,b,CUFFT_FORWARD)
ierr = ierr + cufftExecC2C(iplan1,b,c,CUFFT_INVERSE)
!$acc end host_data

!$acc kernels
c = c / (m*n)
!$acc end kernels
!$acc end data

Profiling with NSight Systems

Epicure hackathon @ CINECA, Casalecchio di Reno (BO) Italy
28-31 October 2024

- The program starts on the CPU

YOU ARE
HERE

Heterogeneous programming

- The program starts on the CPU

- GPUs and CPUs have separated memories

Heterogeneous programming

YOU ARE
HERE

- The program starts on the CPU

- GPUs and CPUs have separated memories

- GPUs need data in their own memory

Heterogeneous programming

- The program starts on the CPU

- GPUs and CPUs have separated memories

- GPUs need data in their own memory

- IO bus is slow compared to GPU BW

Heterogeneous programming

MOVING DATA IS EXPENSIVE

CPU

GPU

- The program starts on the CPU

- GPUs and CPUs have separated memories

- GPUs need data in their own memory

- IO bus is slow compared to GPU BW

Heterogeneous programming

MOVING DATA IS EXPENSIVE

CPU

GPU

- The program starts on the CPU

- GPUs and CPUs have separated memories

- GPUs need data in their own memory

- IO bus is slow compared to GPU BW

YOU ARE
HERE

Heterogeneous programming

MOVING DATA IS EXPENSIVE

IMPROVE DATA LOCALITY

- The program starts on the CPU

- GPUs and CPUs have separated memories

- GPUs need data in their own memory

- IO bus is slow compared to GPU BW

Heterogeneous programming

MOVING DATA IS EXPENSIVE

CPU

GPU

Heterogeneous programming
- The program starts on the CPU

- Many ways to offload kernels to GPUs

- There is a time needed to launch the kernels
(“latency”)

CPU

GPU

OFFLOADED REGION

LAUNCH WAIT

KERNEL

Heterogeneous programming
- The program starts on the CPU

- Many ways to offload kernels to GPUs

- There is a time needed to launch the kernels
(“latency”)

CPU

GPU GAP
GAP

GAP
GAP

GAP

Heterogeneous programming
- The program starts on the CPU

- Many ways to offload kernels to GPUs

- There is a time needed to launch the kernels
(“latency”)

EXPOSE AS MUCH PARALLELISM AS
POSSIBLE

AVOID SMALL KERNELS

COLLAPSE LOOPS, REFACTOR

MEASUREMENT

- Instrument CUDA APIs
- Instrument OpenACC regions
- Instrument MPI, OpenMP for the CPU
- Instrument GPU kernels, GPU metrics
- Sample the CPU (usr routines, libraries)
- Network metrics (H2D, D2D, NIC metrics)

SAMPLING

INSTRUMENTATION CPU

GPU TRACES

SUMMARIES

NSight Systems

Generate the report
with CLI (nsys)

open the trace with
GUI (nsys-ui)*.nsys-rep

Timeline view

cpu activity

gpu kernels

data movements

library instrumentation
CUDA backend

CPU sampling

--backtrace=dwarf
on Intel targets

Summaries

Statistics

CLI : nsys command
nsys [command_switch] [optional command_switch_options][application] [optional application_options

Command switches

- profile All-in-one , needed for concurrent profiling sessions
- start - launch - cancel - shutdown - stop Interactive mode
- export - stats - analyze Postprocessing to export / textual summaries

Command switch options

- --trace=[nvtx,cuda,osrt],mpi,openmp,openacc,cublas,cusolver,... Events to trace
- --cuda-memory-usage Collect GPU memory usage
- --nic-metrics Network bandwidth

Example: nsys profile --trace=openacc,cuda,nvtx cfd.exe → report1.nsys-rep

NVTX ranges

NVTX ranges

NVTX library (nvToolsExt.h) can be used to enhance trace
readability:

- C-based API to annotate events and code ranges, to be
visualized in the Nsight System timeline

- Limited overhead when the tool is not attached to the
application

Functionalities

- NVTX Markers → annotate events occurring at a specific
time

- NVTX Ranges → annotate timespan of code regions

Events

- associated to message (ASCII, Unicode) → A, W variant of
function calls

- associated to structure with attributes → Ex variant of
function calls

//Set to default

nvtxEventAttributes_t eventAttrib = {0};

//Declare version and size

eventAttrib.version = NVTX_VERSION;
eventAttrib.size = NVTX_EVENT_ATTRIB_STRUCT_SIZE;

// Message type and message
// // ASCII

eventAttrib.messageType = NVTX_MESSAGE_TYPE_ASCII;
eventAttrib.message.ascii = __FUNCTION__ ":ascii";
// //UNICODE

eventAttrib2.messageType = NVTX_MESSAGE_TYPE_UNICODE;
eventAttrib2.message.unicode = __FUNCTIONW__ L
":unicode \u2603 snowman";

// Color type and color

eventAttrib.colorType = NVTX_COLOR_ARGB;
eventAttrib.color = COLOR_YELLOW;

NVTX ranges

NVTX library (nvToolsExt.h) can be used to enhance trace
readability:

- C-based API to annotate events and code ranges, to be
visualized in the Nsight System timeline

- Limited overhead when the tool is not attached to the
application

Functionalities

- NVTX Markers → annotate events occurring at a specific
time

- NVTX Ranges → annotate timespan of code regions

Events

- associated to message (ASCII, Unicode) → A, W variant of
function calls

- associated to structure with attributes → Ex variant of
function calls

//Set to default

nvtxEventAttributes_t eventAttrib = {0};

//Declare version and size

eventAttrib.version = NVTX_VERSION;
eventAttrib.size = NVTX_EVENT_ATTRIB_STRUCT_SIZE;

// Message type and message
// // ASCII

eventAttrib.messageType = NVTX_MESSAGE_TYPE_ASCII;
eventAttrib.message.ascii = __FUNCTION__ ":ascii";
// //UNICODE

eventAttrib2.messageType = NVTX_MESSAGE_TYPE_UNICODE;
eventAttrib2.message.unicode = __FUNCTIONW__ L
":unicode \u2603 snowman";

// Color type and color

eventAttrib.colorType = NVTX_COLOR_ARGB;
eventAttrib.color = COLOR_YELLOW;

NVTX ranges

//Set to default

nvtxEventAttributes_t eventAttrib = {0};

//Declare version and size

eventAttrib.version = NVTX_VERSION;
eventAttrib.size = NVTX_EVENT_ATTRIB_STRUCT_SIZE;

// Message type and message
// // ASCII

eventAttrib.messageType = NVTX_MESSAGE_TYPE_ASCII;
eventAttrib.message.ascii = __FUNCTION__ ":ascii";
// //UNICODE

eventAttrib2.messageType = NVTX_MESSAGE_TYPE_UNICODE;
eventAttrib2.message.unicode = __FUNCTIONW__ L
":unicode \u2603 snowman";

// Color type and color

eventAttrib.colorType = NVTX_COLOR_ARGB;
eventAttrib.color = COLOR_YELLOW;

NVTX ranges
NVTX library (nvToolsExt.h) can be used to enhance trace
readability:

- C-based API to annotate events and code ranges, to be
visualized in the Nsight System timeline

- Limited overhead when the tool is not attached to the
application

Functionalities

- NVTX Markers → annotate events occurring at a specific
time

- NVTX Ranges → annotate timespan of code regions

Events

- associated to message (ASCII, Unicode) → A, W variant of
function calls

- associated to structure with attributes → Ex variant of
function calls

Markers (events at a specific time)

 nvtxMarkA(__FUNCTION__ ":nvtxMarkA");

nvtxMarkW(__FUNCTIONW__ L":nvtxMarkW");

nvtxMarkEx(&eventAttrib);

Ranges (nested time ranges occurring on a CPU thread)

start: nvtxRangePushEx

 nvtxRangePushA

 nvtxRangePushW

end : nvtxRangePop

CUDAFortran: interfaces provided by nvtx module (subroutines nvtxStartRange,
nvtxEndRange)

// for message-only events

nvtxRangePushA(__FUNCTION__ ":nvtxRangePushA");
[... code here ...]
nvtxRangePop();

nvtxRangePushW(__FUNCTIONW__
L":nvtxRangePushW");
[... code here ...]
nvtxRangePop();

// for structured events

nvtxRangePushEx(&eventAttrib);
[... code here ...]
nvtxRangePop();

NVTX ranges

DAXPY profiled
nvfortran -fast -acc -gpu=cc80,cuda12.3 -Minfo=accel -lnvhpcwrapnvtx -o binary daxpy.f90

DAXPY profiled
nvfortran -fast -acc -gpu=cc80,cuda12.3 -Minfo=accel -lnvhpcwrapnvtx -o binary daxpy.f90

 call nvtxstartRange("initialize",1)
 !$acc parallel loop
 do i = 1, N
 D(i) = 0
 X(i) = 1
 Y(i) = 2
 end do
 call nvtxEndRange()

 call nvtxStartRange("daxpy",2)
 !$acc parallel loop
 do i = 1, N
 D(i) = A* X(i) + Y(i)
 end do
 call nvtxEndRange()

Data movements
nvfortran -fast -acc -gpu=cc80,cuda12.3 -Minfo=accel -lnvhpcwrapnvtx -o binary daxpy.f90

GPU kernels
nvfortran -fast -acc -gpu=cc80,cuda12.3 -Minfo=accel -lnvhpcwrapnvtx -o binary daxpy.f90

Kernel launches
nvfortran -fast -acc -gpu=cc80,cuda12.3 -Minfo=accel -lnvhpcwrapnvtx -o binary daxpy.f90

Patterns in OpenACC traces

CPU LAUNCHES
OPERATION TO A GPU CPU WAITS FOR THE OPERATION ON THE GPU CPU CONTINUES

OPERATION ON THE GPU

SYNC : CPU waits for the operation on the GPU to be over

Patterns in OpenACC traces

CPU LAUNCHES
OPERATION TO A GPU CPU WAITS FOR THE OPERATION ON THE GPU CPU CONTINUES

OPERATION ON THE GPU

ASYNC : CPU does not wait for the operation on the GPU to be over

SYNC : CPU waits for the operation on the GPU to be over

CPU LAUNCHES
OPERATION TO A GPU CPU CONTINUES

OPERATION ON THE GPU

Patterns in OpenACC traces

CPU LAUNCHES
OPERATION TO A GPU CPU WAITS FOR THE OPERATION ON THE GPU CPU CONTINUES

OPERATION ON THE GPU

ASYNC : CPU does not wait for the operation on the GPU to be over

SYNC : CPU waits for the operation on the GPU to be over

CPU LAUNCHES
OPERATION TO A GPU CPU CONTINUES

OPERATION ON THE GPU

Patterns for compute directives
By default, OpenACC queues operation on the default stream

Data directives, parallel and kernels impose sync between CPU and GPU

Parallel and kernels embody an implicit data region

!$acc parallel loop [copyout(a)]
do i = 1, N
 a(i) = 0
end do

Patterns for compute directives
By default, OpenACC queues operation on the default stream

Data directives, parallel and kernels impose sync between CPU and GPU

Parallel and kernels embody an implicit data region

data openacc parallel

kernel execution

data

launch waiting

in out

cpu cpu

downloadupload

Patterns for compute and data
What if parallel/kernels is in a data region?

If parallel/kernel is in the same routine of the structured data region, the runtime
knows that the data is already on the GPU

Remind that enter data does not open a data region!

subroutine myloop()
<...>
!$acc data copyout(a)
!$acc parallel loop
do i = 1, N
 a(i) = 0
end do
!$acc end data
<...>
end subroutine

Patterns for compute and data
Unless needed to copy some missing variables, the implicit data region is not
opened (because already opened!)

If the compute region is in the same routine of the data region, the runtime will
not check for variables on the GPU

data openacc parallel

kernel execution

data

launch waiting

in out

cpu cpu

download
upload

Patterns for compute and data
If the compute directive is not in the same routine of the data region, the
runtime will check anyways if the data is on the GPU or not

This extra check does not trigger an actual data movement, but it is an overhead

data openacc parallel

kernel execution

data

launch waiting

in out

download
upload

data data

OVE
RHEA

D

OVE
RHEA

D

Patterns for compute and data
This extra check does not trigger an actual data movement, but it is an overhead

Be careful when using PRESENT clause, it forces this extra check, might add an
overhead

data openacc parallel

kernel execution

data

launch waiting

in out

download
upload

data data

OVE
RHEA

D

OVE
RHEA

D

Patterns for compute and data
This extra check can be avoided only with the declare directive on a global
variables

data openacc parallel

kernel execution

data

launch waiting

in out

download
upload

Patterns for compute and data
Unless needed to copy some missing variables, the implicit data region is not
opened (because already opened!)

We can open a single data region for multiple kernels

data openacc parallel

kernel execution

data

launch waiting

in out

cpu cpu

download
upload

openacc parallel

kernel execution

launch waiting

Kernel launches
What if a single parallel encloses multiple loops

!$acc data copyout(a,b)
!$acc parallel

!$acc loop
do i = 1, N
 a(i) = 0
end do
!$acc loop
do i = 1, N
 b(i) = 0
end do

!$acc end parallel
!$acc end data

Kernel launches
There will be one OpenACC compute region, one single launch and multiple kernels

Avoids multiple kernel launches (reduces overhead)

data openacc parallel

kernel 1

data

launch waiting

in out

cpu cpu

download
upload

kernel 2

Kernel launches
There will be one OpenACC compute region, one single launch and multiple kernels

Avoids multiple kernel launches (reduces overhead)

! Parallel: Gangs do not sync: if one gang has finished relative job in kernel 1, continues in kernel 2

! Kernels: imposes a sync barrier

data openacc parallel

kernel 1

data

launch waiting

in out

cpu cpu

download
upload

kernel 2

Parallel vs kernels

!$acc parallel
!$acc loop
do i = 1, N
 D(i) = 0
 X(i) = 1
 Y(i) = 2
end do

!$acc loop
do i = 1, N
 D(i) = A*X(i)+Y(i)
end do
!$acc end parallel

!$acc parallel
!$acc loop
do i = 1, N
 D(i) = 0
 X(i) = 1
 Y(i) = 2
end do

!$acc loop
do i = 1, N-1
 D(i) = A*X(i+1)+Y(i+1)
end do
!$acc end parallel

!$acc kernels
do i = 1, N
 D(i) = 0
 X(i) = 1
 Y(i) = 2
end do

[implicit wait]

do i = 1, N-1
 D(i) = A*X(i+1)+Y(i+1)
end do
!$acc end kernels

Careful if gangs access different data locations in loops

Kernels or parallel?

Summaries
nsys stats report1.nsys-rep

OpenACC runtime

NVIDIA libraries

Asynchronous and overlap

Network usage
–trace=mpi --nic-metrics=true

MPI awareness

We acknowledge OpenACC.org and NVIDIA for fruitful learning and training material

