

Fujitsu A64FX Processor Technical presentation

A64FX

FUĴITSU

Feb 4th, 2025

Presenter: John Wagner - Senior HPC Solutions Architect

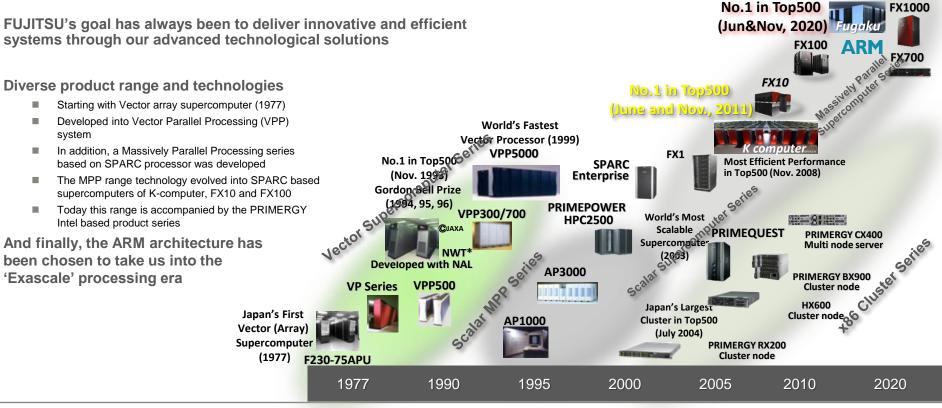
FUJITSU TECHNOLOGY SOLUTIONS

This document includes descriptions of assistant cores and TofuD which are only for Fugaku and FX1000.

Contents

A64FX processor

- What is the A64FX Processor
- Why is HPC Performance High
- Why is Power Consumption Low
- Why is Reliability High
- A64FX Software Environment
- A64FX platforms


What is the A64FX Processor

- Fujitsu Processor Development
- DNA of Fujitsu Processors
- Technical Info of A64FX
- A64FX Specifications and Efficiency
- A64FX Features
- Execution Unit

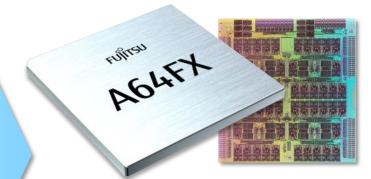
FUJITSU History of HPC System

Delivering high-end computing solutions for over 40 years

Copyright 2020 FUJITSU LIMITED

DNA of Fujitsu Processors

A64FX inherits DNA from technologies in the HPC, UNIX servers, & Mainframes


High performance-per-watt Execution & memory throughput Low power Massively parallel

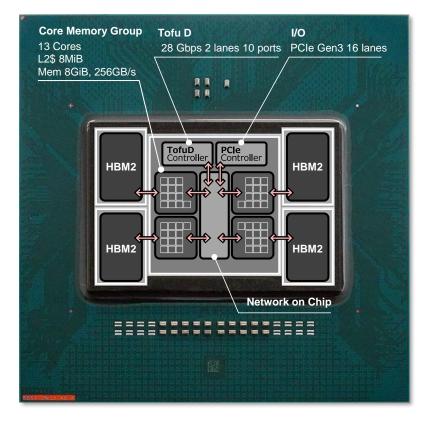
High speed & flexibility Thread performance Software on Chip Large SMP

High reliability Stability Integrity Continuity

CPU with extremely high throughput

High performance Low power consumption High reliability

Technical Info of A64FX


Architecture Features

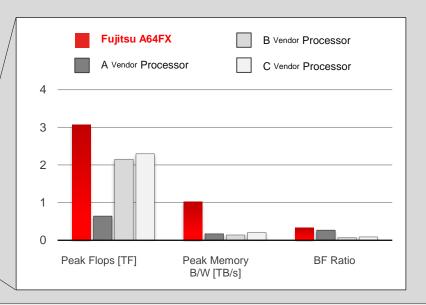
- Arm V8.2-A (aarch64 only)
- SVE 512-bit wide SIMD x 2 pipeline per core
- 48 computing cores + 4 assistant cores^{*1} All 52 cores are identical
- Frequency 1.8GHz, 2.0GHz, 2.2GHz^{*1}
- L1I\$ size: 3MiB (64KiB x 48 computing core)
- L1D\$ size: 3MiB (64KiB x 48 computing core)
- L2 cache size: 32MiB (8MiB x 4 CMG^{*2})
- HBM2 32GiB
- PCIe Gen3 16 lanes
- TofuD^{*1} 6D Mesh/Torus, 28Gbps x 2 lanes x 10 ports

7nm Fin FET

- 8,786M transistors
- 594 package signal pins

*1: 2.2GHz, Assistant cores and TofuD are only available for Fugaku and FX1000 *2: CMG: Core Memory Group

A64FX Specifications and Efficiency


FUjitsu

A64FX peak performance and efficiency

- 3.072TFLOPS@2.0GHz, >90%@DGEMM
- Memory B/W 1024GB/s, >80%@Stream Triad

Specifications

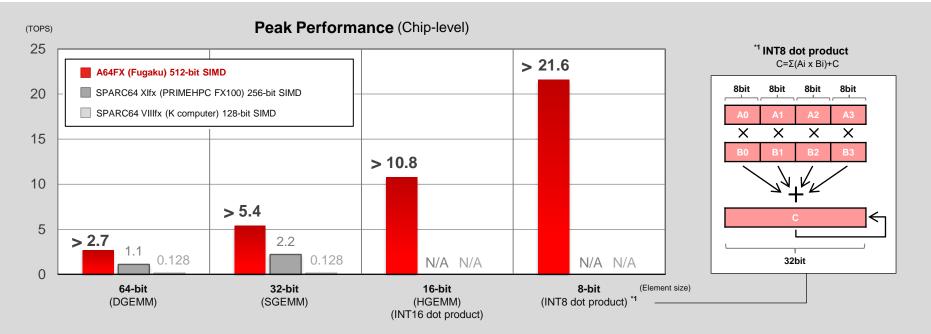
	Fujitsu A64FX	A Vendor Processor	B Vendor Processor	C Vendor Processor
ISA	Arm v8.2-A	Arm v8-A	x86	x86
Vector instructions	SVE	Neon	AVX512	AVX256
Process Node	7nm	16nm	14nm	7nm
# of Cores	48	32	28	64
Memory	HBM2	DDR4	DDR4	DDR4
Peak FLOPS	3.072TF	0.64TF	2.15TF	2.30TF
Peak Memory B/W	1024GB/s	171GB/s	141GB/s	205GB/s
BF Ratio	0.333	0.267	0.066	0.089

A64FX Features

Collaboration with Arm to develop and optimize SVE for a wide range of applications

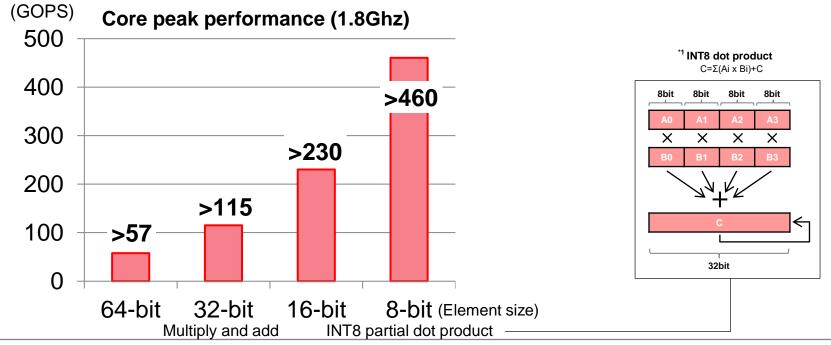
FP16 and INT16/8 dot product are introduced for AI applications

	A64FX	SPARC64 Xifx [PRIMEHPC FX100]	SPARC64 VIIIfx [K computer]
ISA	Armv8.2-A + SVE	SPARC-V9 + HPC-ACE2	SPARC-V9 + HPC-ACE
SIMD Width	✓ 512-bit	256-bit	128-bit
Predicated Operations	✓ Enhanced	✓	✓
Four-operand FMA	✓ Enhanced	✓	✓
Gather/Scatter	✓ Enhanced	✓	-
Math. Acceleration	✓ Further enhanced	✓ Enhanced	✓
Compress	✓ Enhanced	✓	-
First Fault Load	✓ New	-	-
FP16	✓ New	-	-
INT16/ INT8 Dot Product	✓ New	-	-
HW Barrier* / Sector Cache*	✓ Further enhanced	Enhanced	✓
Many core architecture	 ✓ Further enhanced (48 cores) 	Enhanced (32 cores)	 ✓ (8 cores)
High Band Width	✓ Further enhanced (1024GB/sec)	Enhanced (240GB/sec x2 in/out)	✓ (64GB/sec)


* Utilizing aarch64 implementation-defined system registers and available with FUJITSU Software Technical Computing Suite or FUJITSU Software Compiler package

Execution Unit

Extremely high throughput

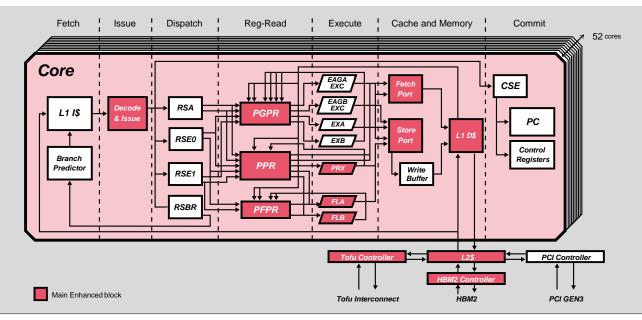

- 512-bit wide SIMD x 2 Pipelines x 48 Cores
- >90% execution efficiency in (D|S|H)GEMM and INT16/8 dot product

A64FX technologies: Core performance

High calc. throughput of Fujitsu original CPU core w/ SVE

■ 512-bit wide SIMD x 2 pipelines and new integer functions

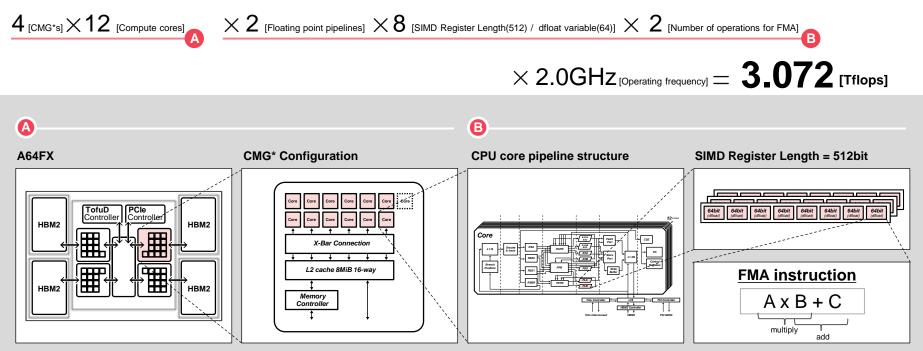
Why HPC Performance is High


- A64FX Core Pipeline
- SIMD Width
- Four-operand FMA with Prefix Instruction
- Gather/ Scatter (Level 1 Cache)
- Sector Cache
- Many-Core Architecture
- High Bandwidth
- High Performance in Benchmark
- High Performance on Real Applications

A64FX Core Pipeline

A64FX inherits and enhances superior features of the SPARC64 VIIIfx (K computer's CPU)

- Inherits superscalar, out-of-order, branch prediction, etc.
- Enhances SIMD and predicate operations (PR)
 - 2x 512-bit wide SIMD FMA + Predicate Oper. + 4x ALU (shared with 2x AGEN)
 - 2x 512-bit wide SIMD load or 512-bit wide SIMD store



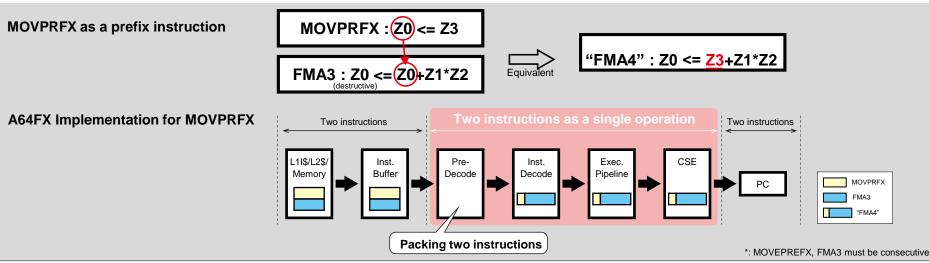
SIMD Width

SIMD Width Contribution to Computing Performance

Peak performance [double-precision] is 3.072 TFlops

* CMG: Core memory Group

Four-operand FMA with Prefix Instruction

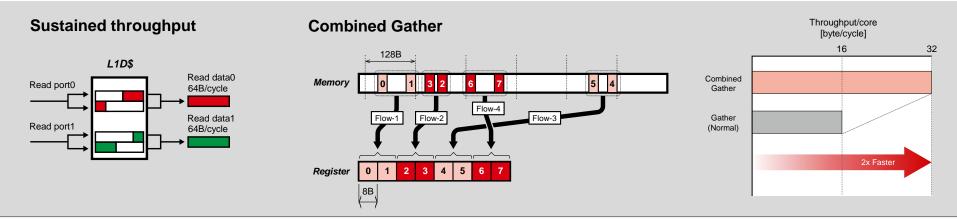


MOVPRFX as a prefix instruction

 For SVE, four-operand "FMA4" requires a prefix instruction (MOVPRFX) followed by destructive 3-operand FMA3

A64FX Implementation for MOVPRFX

A64FX hides the overhead of its main pipeline by packing MOVPRFX and the following instruction into a single operation

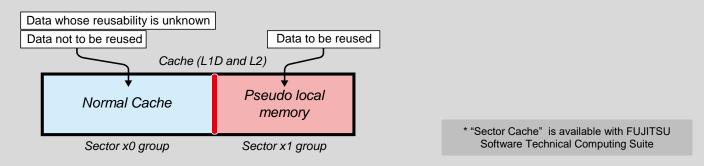


Gather/Scatter (Level 1 Cache)

L1 cache throughput maximizes core performance

- Sustained throughput for 512-bit wide SIMD load
 - An unaligned SIMD load crossing cache line keeps the same throughput
- **Combined Gather** mechanism increasing gather throughput
 - Gather processing is important for real HPC applications
 - A64FX introduces "Combined Gather" mechanism enabling to return up to two consecutive elements in a "128-byte aligned block" simultaneously

Sector Cache

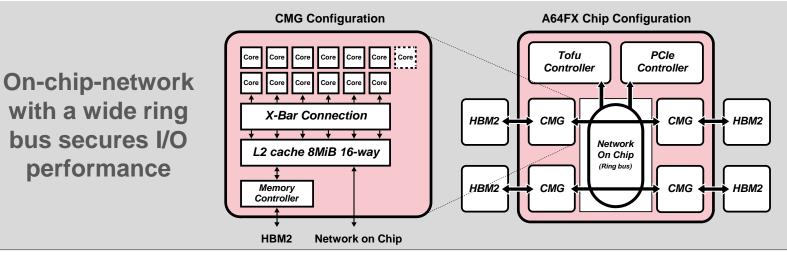


Concept

- Software-controlled cache mechanism
 - Conventional caches' issue: Hindering performance improvements because of evicting the data including reusable data from the cache when registering other data
 - The sector cache mechanism: To achieve higher performance, splitting the cache into two sectors frequently reused data in a sector separately and allows software control

Sector Cache Technology

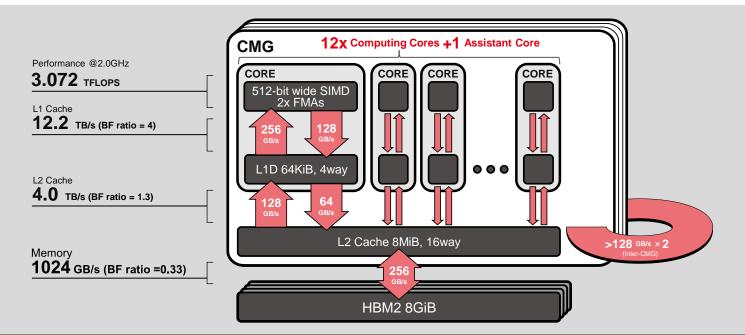
- Newly implemented the sector cache mechanism into the L1D as well as L2
- Using sector x1group for data to be reused to improve reusability of cache and reduce cache miss



Many Core Architecture

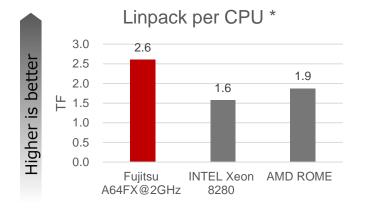
A64FX consists of four CMGs (Core Memory Group)

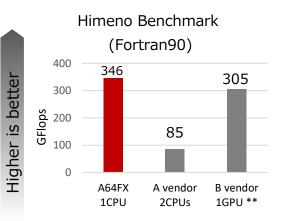
- A CMG consists of 13 cores, L2 cache and a memory controller
 - One out of 13 cores is an assistant core which handles daemon, I/O, etc.
- Four CMGs keep cache coherency by ccNUMA with on-chip directory
- X-bar connection in a CMG maximizes high efficiency for throughput of the L2 cache
- Process binding in a CMG allows linear scalability up to 48 cores

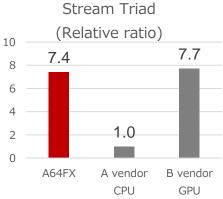


High Bandwidth

Extremely high bandwidth in caches and memory


 A64FX has out-of-order mechanisms in cores, caches and memory controllers It maximizes the capability of each layer's bandwidth


High Performance in Benchmark



Compute intensive benchmark

Memory intensive benchmark

Linpack Benchmark:

The benchmark to solve a dense system of linear equations

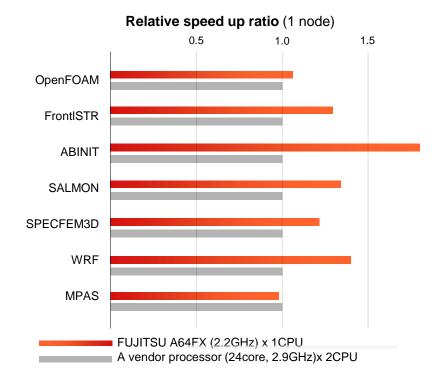
* Calculated from top500.org 2019/11

Himeno Benchmark:

Stencil calculation to solve Poisson's equation by Jacobi method

** Performance evaluation of a B vendor's vector supercomputer system

Stream Triad:


The benchmark to measure memory B/W for simple vector kernels

High Performance on Real Apps

FUĴÎTSU

The performance on 1node is evaluated for seven OSS applications

- Measured on PRIMEHPC FX1000, A64FX 2.2GHz
- Up to 1.8x faster over A vendor Processor x2
- High memory B/W and 512-bit wide SIMD work effectively with these applications

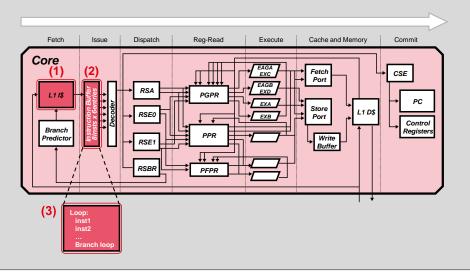
Why Power Consumption is Low

- Low Power Consumption Technology
- Custom Design
- 2.5D Packaging Technology
- Power Management
- Green500, Nov. 2019 Result
- High Performance in Power Efficiency

Low Power Consumption Technology

7nm Process

Leakage Power Reduction

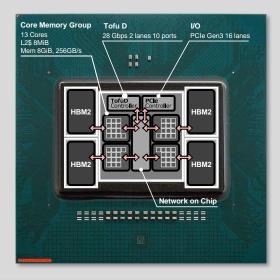

- Water cooling system (Fugaku)
- Multi-Vth standard cell
- Transistor channel width optimization
 - Fujitsu in-house design tool reduces channel width of cells, while still meeting operating frequency

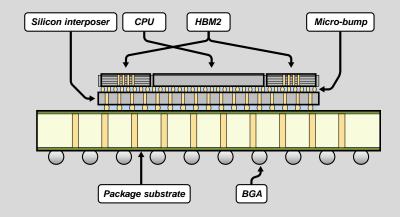
Dynamic Power Reduction

- Clock gating to in-active latches
- Micro-architecture optimization

e.g. Short Loop Detector The basic operation is fetched from <u>(1)L11 \$</u> and decoded via <u>(2) Instruction Buffer</u>.

However, if (3) <u>"loop contained in the Instruction</u> <u>Buffer"</u> is detected, the instruction fetch from (1)L11\$ is stopped to save power and fetch the instruction from the (2)Instruction Buffer.

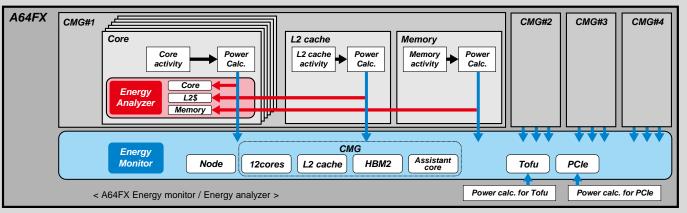



2.5D Packaging Technology

High density packaging technology

- Heterogeneously integrate CPU chip and 3D stacked memory into single package using 2.5D packaging technology
- The CPU chip includes four HBM2 memory controllers and interfaces for PCI-Express and ToFu D networks

CPU package section


Power Management

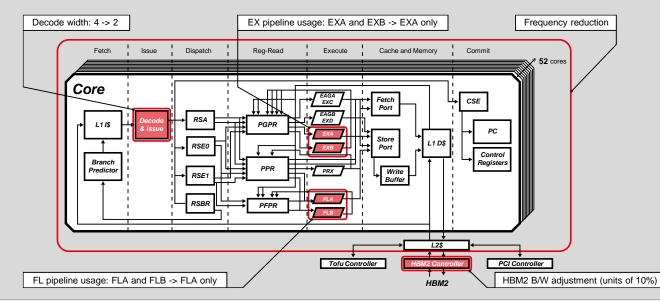
"Energy monitor" / "Energy analyzer" for activity-based power estimation

- Energy monitor (per chip) : Node power via Power API* (~msec)
 - Average power estimation of a node, CMG (cores, an L2 cache, a memory) etc.
- Energy analyzer (per core) : Power profiler via PAPI** (~nsec)
 - Fine grained power analysis of a core, an L2 cache and a memory
- Enabling chip-level power monitoring and detailed power analysis of applications

*Suggested by Sandia National Laboratories and is available with FUJITSU Software Technical Computing Suite

** Performance Application Programming Interface

Power Management (Cont.)

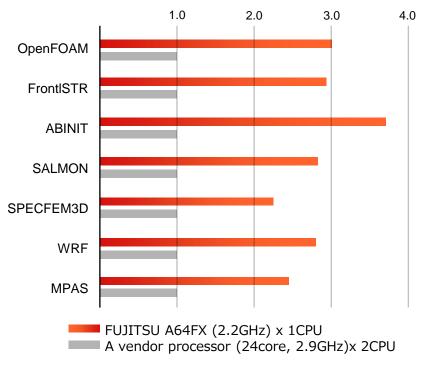


"Power Knob" for power optimization

- A64FX provides power management function called Power Knob*
 - Applications can change hardware configurations for power optimization

***Power knob** is available in FUJITSU Software Technical Computing Suite

Power knob and Energy monitor/analyzer help users optimize power consumption of their applications



High Performance in Power Efficiency

The power efficiency on 1node is evaluated for seven OSS applications

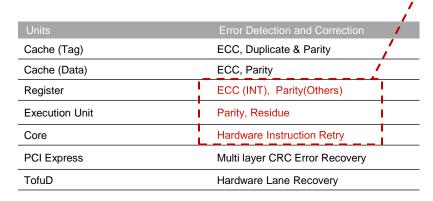
- Measured on PRIMEHPC FX1000, A64FX 2.2GHz
- Up to 3.7x more efficient over A vendor Processor x2
- High power efficiency is achieved by energyconscious design and implementation

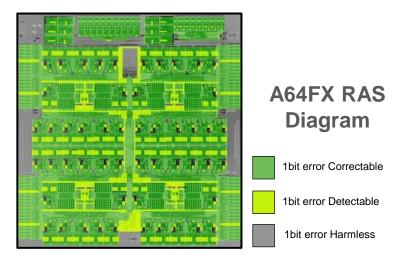
Relative power efficiency ratio

Why is Reliability High

- Fujitsu Mission Critical Technologies
- A64FX inherits K computer's CPU Reliability

Fujitsu Mission Critical Technologies

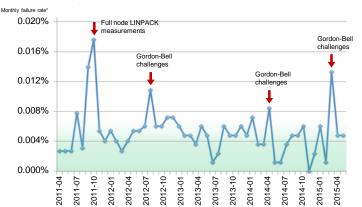

Large systems require extensive RAS capability of CPU and interconnect


High reliability

from Fujitsu MF

technologies

- A64FX has a mainframe class RAS for integrity and stability It contributes to very low CPU failure rate and high system stability
 - ECC or duplication for all caches
 - Parity check for execution units
 - Hardware instruction retry
 - Hardware lane recovery for Tofu links
 - ~128,400 error checkers in total



A64FX inherits K computer's CPU Reliability

A64FX inherits K computer's RAS technologies

Failure trend of K computer's 80,000+ CPUs [SPARC64 VIIIfx] was low

Monthly Failure Rate of CPUs

Failure trend of CPUs is almost stable except high load terms

Number of CPUs = <u>82,944</u> (Since July 2012)

Comparison with Blue Waters

AFR: Annual Failure Rate (Average failure rate per year) FIT: Failure In Time (1FIT = 1 failure per 10^{9} hours)

Units	Parameter	K computer (April 2011 – June 2015)	Blue Wates*
CPU	# of Parts	82,944	49,238
	AFR	0.06%	0.23%
	FIT	72.00	265.15
DIMM	# of Parts	663,552	197,032
	AFR	0.016%	0.112%
	FIT	18.02	127.84
	FIT / GB	9.01	15.98

*C.Di Martio et al., Lessons learned from the analysis of system failures at petascale: the case of blue waters.

44th international conference on Dependable Systems and Networks (DSN 2014),2014.

CPU failure rates of the K computer are about one quarter compared to that of Blue Waters.

(Source: ISC 2015 Long term failure analysis of 10 petascale supercomputer, RIKEN)

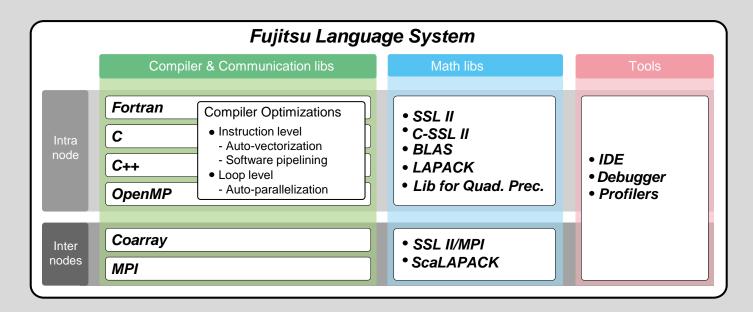
Fujitsu Software Environment

- Software stack
- Fujitsu Language System
- Advantages of Fujitsu Compilers

Software Stack for A64FX System

Both Fujitsu & OSS vendor SW stack are available for application development

- FJ compilers are optimized for the u-architecture, maximizing SVE and HBM2 performance
- We collaboratively work with RIKEN / Linaro / OSS / ISVs and contribute to Arm HPC ecosystem


		chnical Computing Suite (TCS)	FUJITSU Compiler		Bright Cluster Manager(BCM)	OpenHPC
		FX1000			FX700	
	Compiler	Fujitsu compiler	Fujitsu compiler		GC	C8
Programing Environment	Communication Libraries	Fujitsu MPI	Fujitsu MPI	Open MPI		n MPI
	Tools	Fujitsu Profiler	Fujitsu Profiler	川/	GNU GDB	
Schedulers, File System and Management	Job Schedulers	Job scheduler PJM	SLURM		PBS Professional (OSS version)	SLURM
	File System	FEFS	Lustre		Lustre	
	Cluster Management	System management software PSM	Bright Cluster Manager		Warewulf	
Operating System		RHEL8 / CentOS8		RHEL8/RockyLinux8/CentOS8		
HW (Processor)		A64FX				

Fujitsu Language System

Fujitsu Language system

- Develops a variety of programming tools for various programming models
- Designs and develops Software that exploits Hardware performance

Advantages of Fujitsu Compilers

Advanced optimizations to accelerate applications

- Proven vectorization technologies to utilize Armv8-A with SVE
- Software pipelining improves instruction-level parallelism to get objects suitable for micro-architecture

Language standard support

Continuing to support new standards of Fortran, C/C++ and gnu c extension

Support multilevel parallelization

- Auto-parallelization technologies and OpenMP support for thread-level parallelism
- MPI and Fortran Coarray support for process-level parallelism

Fujitsu compiler for C/C++ has two modes (Trad mode and Clang mode) to achieve high performance in a wide range of applications

- Trad mode: Fujitsu's original compiler
- Clang mode: Clang/LLVM compiler with Fujitsu's enhancement

Fujitsu Compiler Commands

Compiler can be used in two modes:

- has a cross compiler on x86 front-end servers
- native on the A64FX compute nodes

Cross-compiler on an x86 server

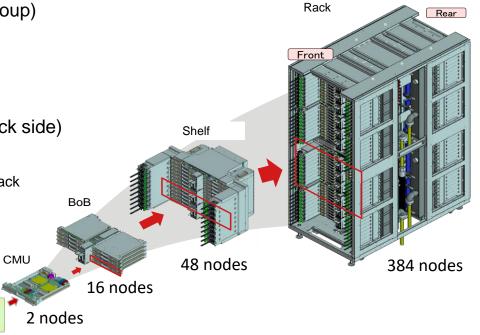
Language	Command		
Fortran	<pre>frtpx [option list] [file list]</pre>		
С	<pre>fccpx [options list] [file list]</pre>		
C++	<pre>FCCpx [options list] [file list]</pre>		

Native-compiler on A64FX

Language	Command		
Fortran	<pre>frt [option list] [file list]</pre>		
С	<pre>fcc [options list] [file list]</pre>		
C++	FCC [options list] [file list]		

A64FX platforms

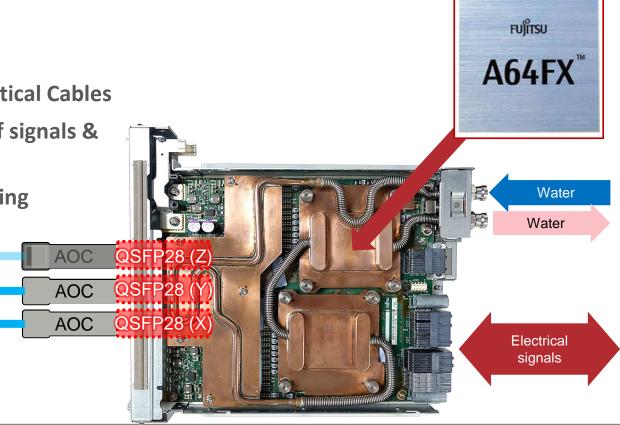
FX1000 integrated system


FX1000 rack integration

Rack characteristics

- 2 nodes per CMU (Core Memory Group)
- 8 CMU's per BoB (Bunch of Blades)
- 16 nodes per BoB
- 3 BoB's per shelf
- 8 shelves per rack (4 shelves per rack side)
- 384 nodes per rack
 - 1.18PF (2 GHz) or 1.298PF (2.2GHz) per rack

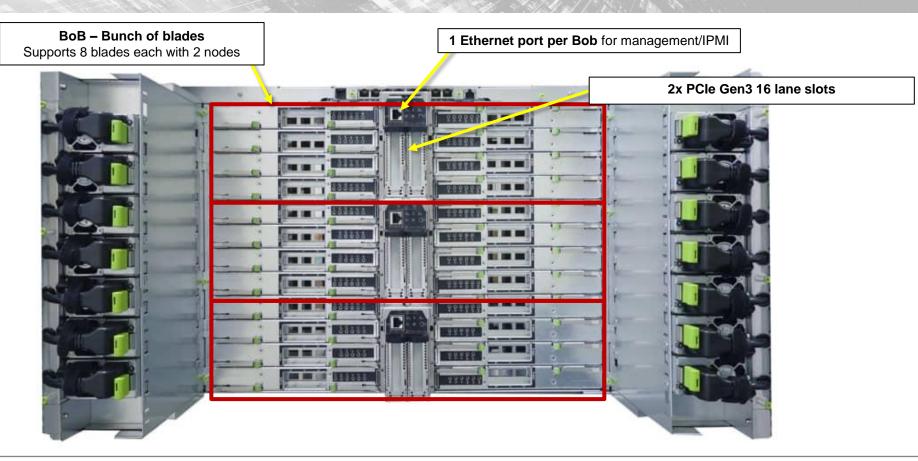
CPU

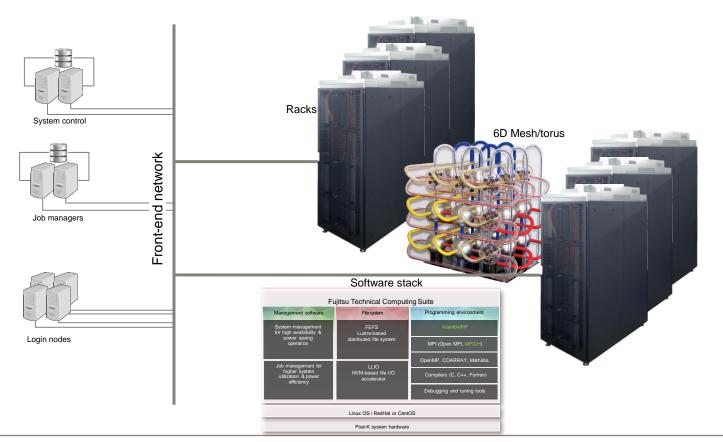


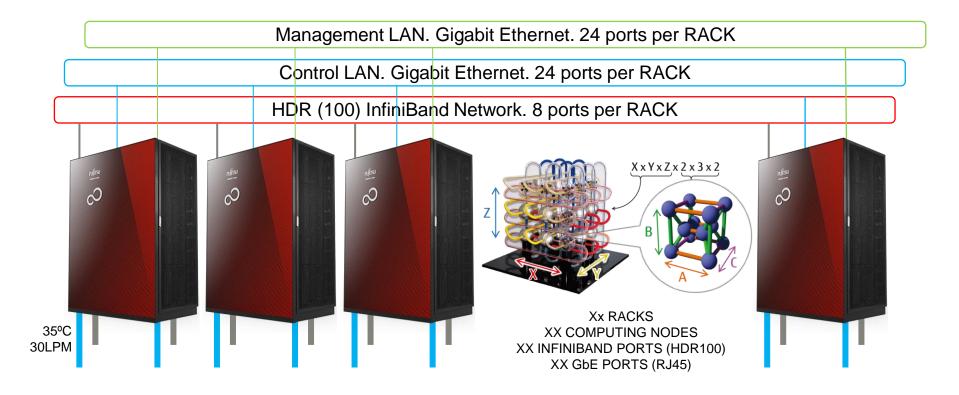
CMU: CPU Memory Unit

2x A64FX Processors

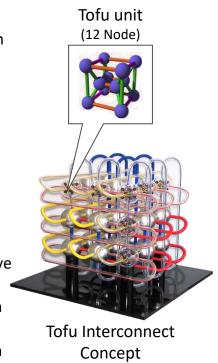
- Run as 2 separate nodes
- **QSFP28 x3 for Active Optical Cables**
- Single-side blind mate of signals & water
- ~100% direct water cooling




FX1000 shelf configuration


FX-1000 system

Hardware Configuration Overview

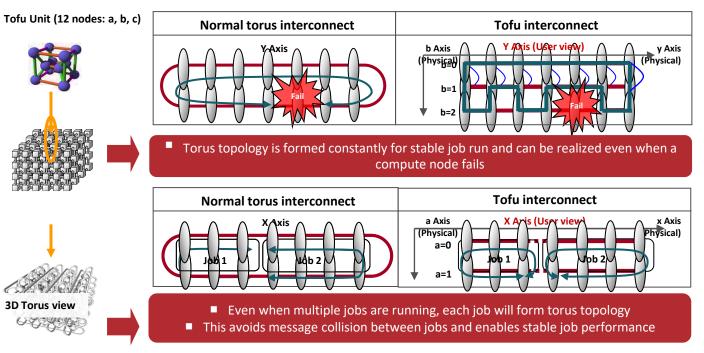

Tofu Interconnect (1/2)

Architecture

- 6D Mesh/Torus topology (Node axis (x, y, z, a, b, c))
- Arbitrary combination of (x, y, z) axis and (a, b, c) axis enables the application to view as simple 3D torus
- Bandwidth per link: 6.8GB/s x bi-direction
- **Concurrent data transfer: 40GB/s x bi-direction**
- Hardware support of collective communication (Barrier, Reduction)
 - Hardware Reduction can support up to 3 elements of double precision data

Features

- Approx. 390K node scalability with direct interconnection network for massive parallel jobs
- Overcome issues with normal 3D torus topology to realize fault-tolerant high operability interconnect
- Non-blocking DMA engine to enable overlap of compute and communication

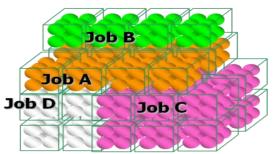


Tofu Interconnect (2/2)

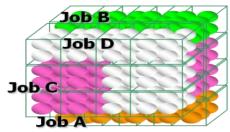
Fault-tolerant high operability interconnect

Formation of torus topology avoiding a failed node

System/Job optimized node allocation

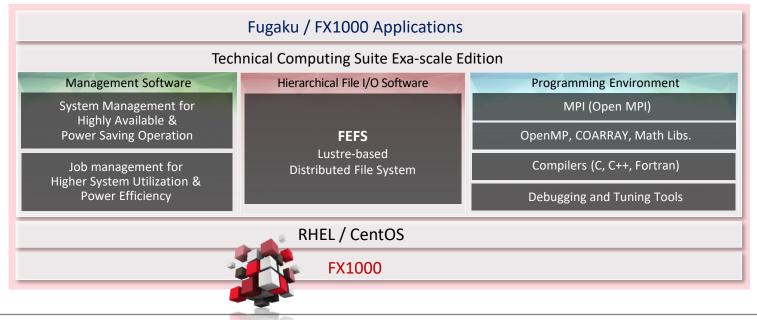


Allocation of nodes for an MPI parallel job


- Rectangular job node allocation
 - Guarantees communication performance between the adjacent nodes of the job
 - Prevents communication conflict with other jobs
 - Single node failure only aborts one job
- Non-Rectangular job node allocation
 - Can use non-adjacent nodes
 - Increases system node occupancy
 - Can be affected by node failures outside the job allocated nodes
 - Shares communication bandwidth with other jobs

Rectangular node allocation for jobs

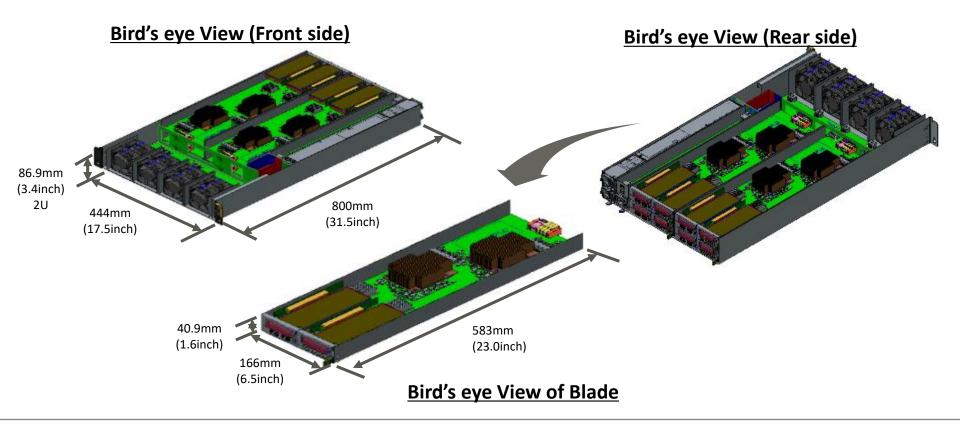
Non-Rectangular node allocation for jobs



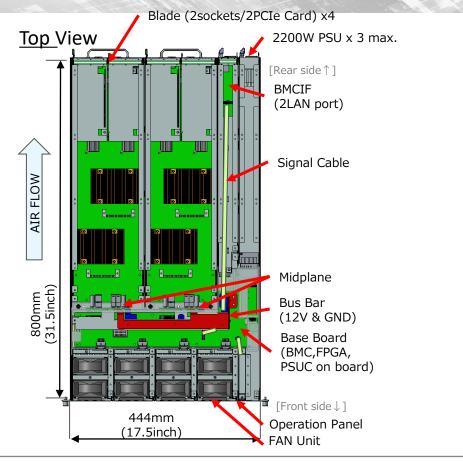
FX100 Exa-scale Edition Software Stack

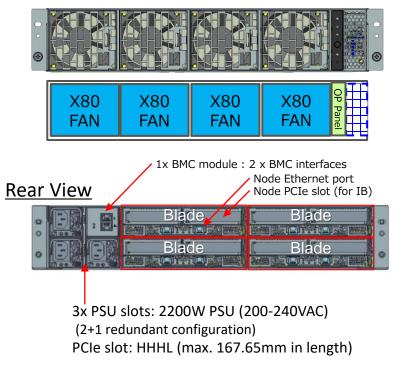
Software Stack based on FUJITSU Technical Computing Suite

- Exa-scale Edition Software Stack will utilize a Linux-based operation system
- System management provide provisioning, deployment function and full supervision

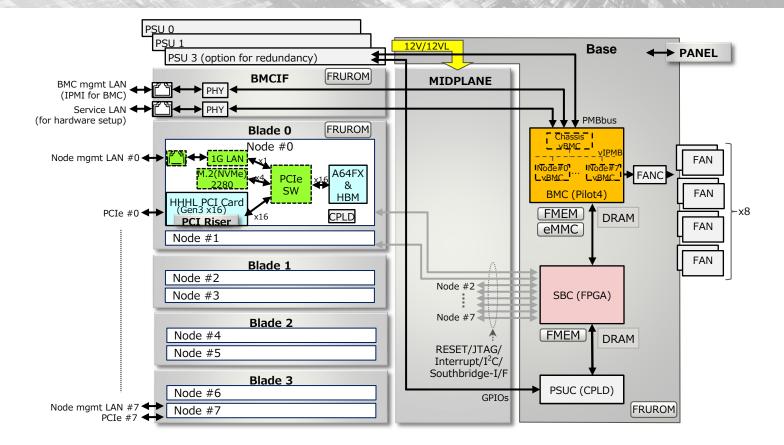


FX700 - 2U system


FX700 Chassis



FX700 Chassis



Front View

FX700 Block Diagram

FX700 BMC interface

HEI

Web portal

- Server Status
- System Event Logs (can be downloaded)
- Power Control control power and boot option (disk, network, UEFI shell) for each node
- Configuration (Network, SNMP, NTP ...etc)
- Maintenance update firmware, change mode of components to enable maintenance
- User management control who can connect to the BMC

FX700 | 2CD444CEC9B7 | S/N : 5332013004 | Chassis : Normal, Power On | Node : Normal

itatus System Event Logs Power Control Configuration Maintenance User

FRU Information

This page gives detailed information for the various FRU devices present in this system.

FRU Device Name	Error Status	Part Number 🔺	Serial Number 🔺	Rev 🛆	Power Status
/CMU#00	Normal	CA08748-D152	PP201202JP	A2	On
CMU#00/PCIECARD#00	Normal	-	-		-
CMU#00/PCIECARD#01	Normal	-	-	-	-
/CMU#00/SSD#00	Normal	-	-	-	-
/CMU#00/SSD#01	Normal	-			
/CMU#01	Normal	CA08748-D152	PP201202JR	A2	On
CMU#01/PCIECARD#00	Normal	-			
CMU#01/PCIECARD#01	Normal	-	-	-	-
/CMU#01/SSD#00	Normal				
/CMU#01/SSD#01	Normal	-	-		-
/CMU#02	Normal	CA08748-D152	PP201106UL	A2	On
CMU#02/PCIECARD#00	Normal	-	-		-
CMU#02/PCIECARD#01	Normal	-			
/CMU#02/SSD#00	Normal	-	-	-	-
/CMU#02/SSD#01	Normal				
/CMU#03	Normal	CA08748-D152	PP201205EN	A2	On
CMU#03/PCIECARD#00	Normal	-			
CMU#03/PCIECARD#01	Normal	-	-		-
/CMU#03/SSD#00	Normal	-	-	-	-
/CMU#03/SSD#01	Normal	-	-		-
/BMCU#00	Normal	CA08748-D111	PP2010085T	A1	
/BMCIF#00	Normal	CA20371-B62X	PP2009000S	004AB	-
/FANU#00	Normal				
/FANU#01	Normal	-	-		-
/FANU#02	Normal	-	-		
/FANU#03	Normal	-	-	-	-
/PSU#00	Normal	-			On
/PSU#01	Normal	-	-	-	On
/PSU#02	Not-Present				

FX700 chassis specification

A64FX 2U Scalable Computing Server

8 nodes per 2U chassis

Node characteristics

- 48-core Armv8-A SVE (512bit SIMD)
- 32GB HBM2
- IB HDR100

FCS: 2020.3.31

High-performance

2.7 or 3.072 TF(DP) x 8 CPU

Low power consumption & Air cooled: ~2.6kW

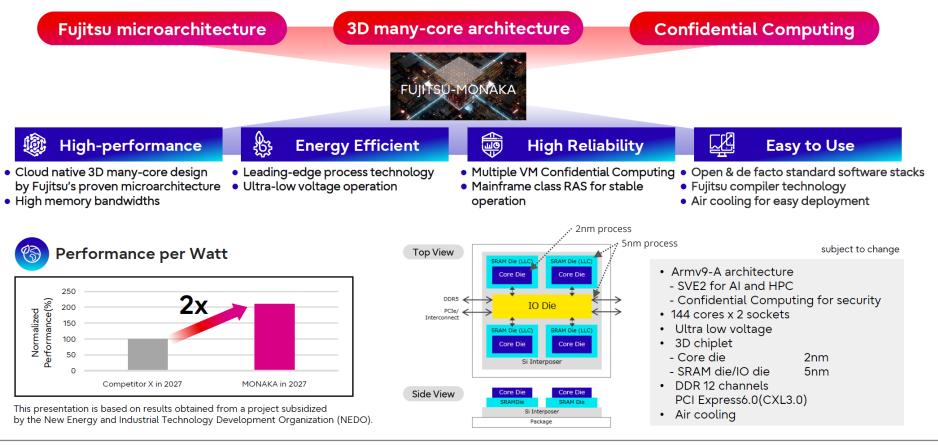
Specifications		
Chassis	2U / 8 nodes maximum	
CPU (A64FX)	2~8	
Main memory (HBM2)	32GB (8GB x 4, on package)/CPU	
DIMM	None	
Internal boot disk	M.2 2280 NVMe SSD x1 /CPU (Option)	
Node mgmt. LAN	1GbE x 1 port / CPU	
PCIe slots	1 / CPU (Gen3 x16 lanes, HHHL, max 25W) Supports InfiniBand HDR100 (ConnectX6)	
BMC Control/Service network	1GbE x 2 port / chassis	
AC input (Freq.)	Base : 2,200W, AC 200-240V(50-60Hz) x 2 (non redundant) Option : 2,200W, AC 200-240V(50-60Hz) x 3 (2+1 redundant)	
Dimension (W x D x H)	444mm x 800mm x 86.5mm	
Weight	40kg	
Operating conditions	Ambient: 5-35°C, Humidity: 20-80% (not condensed)	
Safety	UL, CSA, CE	
RoHS	RoHS2	

FX700 Software Stack options

Commercial and OSS SW stack offerings

- FJ compilers are optimized for the µ-architecture, maximizing SVE and HBM2 performance
- We collaboratively work with RIKEN / Linaro / OSS / ISVs and contribute to Arm HPC ecosystem

		Bright Cluster Manager	OpenHPC	
Programing Environment	Compiler	Fujitsu compiler GCC11	Fujitsu compiler GCC11	
	Communication Libraries	Fujitsu MPI OpenMPI	Fujitsu MPI Open MPI	
	Debuggers	GNU GDB	GNU GDB	
Schedulers, File System and Management	Job Schedulers	SLURM/OpenPBS	SLURM/OpenPBS	
	File System	Lustre/BeeGFS	Lustre/BeeGFS	
	Cluster Management	Bright Cluster Manager	Warewulf	
Operating System		RHEL8.x / Rocky Linux 8.x	RHEL / Rocky Linux 8.x	
HW (Processor)		A64FX		

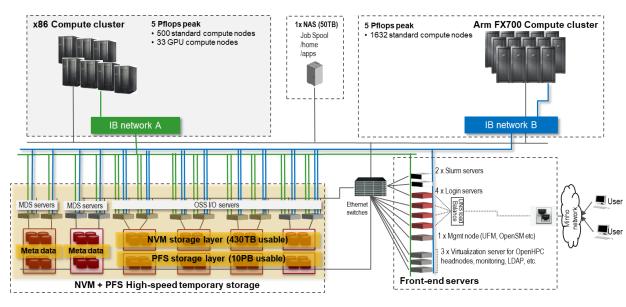

The future – Fujitsu Monaka processor

ARMV9-A SVE2 and 3D stacking

3D microarchitecture – High Performance

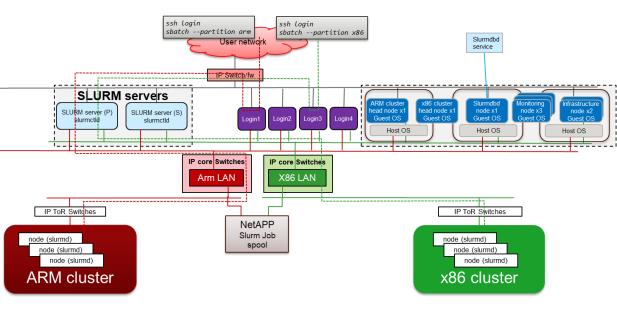
Comparison – A64FX and Fujitsu-Monaka

A64FX	FUJITSU-MONAKA	
HBM2 (8GB) HBM2 (8GB)	DORS Core Die DORS PClef Interconnect SRAM Die (LLC) Core Die DORS PClef SRAM Die (LLC) Core Die DORS PClef SRAM Die (LLC) Core Die DORS PClef SRAM Die (LLC) Core Die SRAM Die (LLC) Core Die SRAM Die (LLC) Core Die SRAM Die (LLC) Core Die SRAM Die (LLC) SRAM Die (LLC) Core Die SRAM Die (LLC) Core Die	
Armv8-A Architecture - SVE for HPC and AI	Armv9-A Architecture - SVE2 enhanced for HPC and AI - Confidential Computing	
48 cores x 1 socket (48 cores per node)	144 cores x 2 sockets (288 cores per node)	
Low voltage	Ultra low voltage	
2.5D - CPU 7nm - HBM2	3D chiplet - Core die 2nm - SRAM die/IO die 5nm	
HBM2 4 channels	DDR5 12 channels	
PCI Express 3.0 Tofu Interconnect	PCI Express 6.0 (CXL3.0)	
Air cooling and water cooling	Air cooling	


Deucalion system

Hybrid cluster with a unified storage and job subsystem

Deucalion Architecture


- Hybrid cluster with ARM, x86 , x86+GPU
- ARM compute cluster
 - 5 Pflops peak A64FX
 - 1632 x Compute Nodes single processor
- x86 compute cluster
 - 5 Pflops peak AMD Rome 7742
 - 530 x standard Compute Nodes (dual proc)
 - 33 x compute with GPU (NVIDIA A100)
- High speed temporary storage (430TB+10PB)
 - High speed storage with both an NVM tier and a traditional PFS disk based tier
- NAS shared storage (50TB)
 - Highly reliable NAS for common user files (homes, apps, job spool etc).
- Front-end servers
 - Common set of front-end servers (login nodes, Slurm nodes, management nodes).
 - Use of virtualized servers or containers for cluster management, monitoring and LDAP.

Job Scheduler - SLURM

- SLURM manages both ARM and x86 clusters
- Users specify a partition name in their job scripts and SLURM allocates the job to nodes of _ the appropriate cluster accordingly
- SLURM uses HA with a primaryand secondary server
- Shared job spool resides on the NetApp NFS server
- Slurmdbd runs on the slurmdbd VM
- slurmd runs on all the compute nodes

Abbreviations

A64FX

- B/W: Band Width
- BF: Band width-to-Flop
- BGA: Ball Grid Array
- CSE: Commit Stack Entry
- EAG: Effective Address Generator
- EX: Integer EXecution unit
- FL: FLoating-point execution unit
- PFPR: Physical Floating-Point Register

- PGPR: Physical General-Purpose Register
- PPR: Physical Predicate Register
- PRX: PRedicate eXecution unit
- RSA: Reservation Station for Address generation
- RSBR: Reservation Station for Branch
- RSE: Reservation Station for Execution
- Tofu: Torus-Fusion

FUJITSU

shaping tomorrow with you